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Abstract

We establish a framework to integrate propositional logic with first-
order logic. This is done in such a way that it optionally appears either
as first-order logic over a Boolean algebra or as propositional logic includ-
ing Boolean quantification. We describe and prove complexity bounds for
extended quantifier elimination by virtual substitution for our theory. This
extended quantifier elimination is, besides many other mathematical algo-
rithms and utilities, implemented in a new context IBALP of the REDUCE

package REDLOG. We demonstrate the capabilities of this new context by
means of numerous application and benchmark examples including QSAT

problems.
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1 Introduction

Propositional logic is a fundamental and versatile concept that is well-established
in mathematics, computer science, and engineering. Compared to other more
sophisticated logical theories, propositional logic is extremely simple. At the first
glance it appears like a restricted and simplified variant of first-order logic, where
propositional variables have taken over the place of atomic formulas. Still, it is
compatible with this first-order logic in various natural ways.

It is the simplicity that makes propositional logic on the one hand that popular
but on the other hand considerably limits its expressiveness. In many applications,
the idea arises naturally to enlarge expressivity by copying the concept of quan-
tification from first-order logic. Doing so straightforwardly, however, destroys the
above-mentioned compatibility. This is unsatisfactory from a theoretical point of
view, but also causes problems from a practical point of view: It inhibits integra-
tion of propositional logic with first-order logic within a single software system.

With this very aim of software integration, we motivate our approach to bring
propositional logic in terms with first-order logic: We extend the computer logic
system REDLOG by a component for dealing with propositional logic. This gives
access to first-order results, methods, concepts, and already existing generic im-
plementations [DS97a].

We summarize the contributions of this paper:

1. We analyze various ways of embedding propositional logic into first-order
logic. We offer a solution that is compatible with the first-order theory of
Boolean algebra and thus allows first-order quantification. Throughout this
paper, we mean by Boolean algebra the Boolean algebra with two elements,
which is uniquely determined up to isomorphisms. Optionally, formulas are
presented to the user like propositional logic including Boolean quantifica-
tion [Pap94].

2. We develop a quantifier elimination procedure for Boolean algebra, and an-
alyze its complexity, which is optimal provided that P �= NP. We give se-
quences of benchmark examples from Boolean circuit design, on which the
procedure appears to perform linearly. Quantifier elimination in particular
covers QSAT problems. It is actually much more general: It can find uniform
solutions for parametric QSAT problems.

3. We explain how to heuristically improve our theoretically optimal quanti-
fier elimination method by sophisticated simplification techniques, variable
selection strategies, and elimination of superfluous case distinctions.

4. From our quantifier elimination procedure we can straightforwardly derive
an extended quantifier elimination procedure. This yields for existential
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questions in addition to the necessary and sufficient conditions in the pa-
rameters also sample solutions. Correspondingly, for universal questions it
possibly yields counterexamples.

5. The methods described here are implemented within the current develop-
ment version of the REDLOG component of the computer algebra system
REDUCE. They will thus become publicly available with the next release
of REDUCE. They are well-documented and professionally maintained. As
a part of this integrated system, they benefit from the work done for other
first-order theories, and vice versa.

6. The implementation provides two choices for the user front end: First, tra-
ditional first-order logic over Boolean algebras. Second, a propositional
wrapper. This wrapper makes first-order logic appear to the user like tra-
ditional propositional calculus including Boolean quantification. The user
can switch between these views according to his needs at any time during a
session.

7. We give a variety of application examples for our methods from mathemat-
ics, computer science, and engineering. Our focus is on digital circuit de-
sign and testing. The examples include sequences of benchmark examples
to fathom the limits in problem size for the applicability of our methods.
Due to the apparently particularly favorable structure of Boolean algebras,
we can cope with problem sizes that have not been accessible to quantifier
elimination in any other context so far. In one circuit design example, we
are able to eliminate more than 15 000 quantifiers.

2 Propositional vs. Predicate Logic

Propositional logic combines propositional variables from a set {Vi}i∈I to formu-
las by means of Boolean operations like true, false, ¬, ∧, ∨, =⇒, ⇐⇒. A semantic
for these formulas is obtained by interpreting the propositional variables as either
“true” or “false” and then deriving a truth value for a formula according to the
usual interpretation of the operations.

First-order logic works similarly with atomic formulas over some fixed lan-
guage Σ instead of propositional variables. Atomic formulas are either equations
or predicates constructed from relation symbols in Σ. Here a semantic is obtained
by interpreting these atomic formulas in a Σ-structure S with universe S at some
point in S. From the truth values obtained for the atomic formulas this way, a truth
value for the considered formula is derived exactly as for propositional logic. In
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addition, first-order logic allows quantification ∃x, ∀x, where x is a variable rang-
ing over elements of the corresponding universe S.

2.1 Pure First-Order Approach

First-order logic covers propositional logic in a very natural way as follows: One
chooses the language {Vi}i∈I where all these “propositional variables” are sym-
bols for relations of arity 0. If one then refrains from using equations and quan-
tification, then the corresponding subset of first-order formulas is identical to the
propositional formulas discussed above. Semantic is compatible as well: The
interpretation of the variables in the former corresponds to the choice of the struc-
ture S, which gives a constant interpretation for each relation symbol Vi as either
“true” or “false.”

Note that it is formally not possible with this approach to make quantifica-
tions like ∃Vi or ∀Vi. Such quantifications, however, have a quite straightforward
semantic and are most desirable as we are going to demonstrate throughout this
article. We therefore take a different approach to embed propositional calculus
into first-order logic, which we can later extend to allow quantification.

2.2 Algebraic Propositional Approaches

From an algebraic point of view, propositional formulas are terms over a suitable
language, such as the following one for Boolean algebras:

Σ =
(
0(0), 1(0),∼(1),&(2), |(2),→(2),↔(2)

)
.

Terms T are recursively defined to be variables from an infinite set V , one of the
constants 0, 1 ∈ Σ, ∼t, where t ∈ T , or t1 � t2, where � ∈ {&, |,→,↔} and t1,
t2 ∈ T . These syntactic terms are semantically interpreted in the Boolean alge-
bra B with universe {0, 1} considered as a Σ-structure. For this, ∼ is interpreted
as “not,” & is “and,” | is “or,” → is implication, and ↔ is biimplication. Con-
sider an equation (t = t′)(x1, . . . , xn). The equation is satisfiable if there exist
b1, . . . , bn ∈ {0, 1} such that B |= (t = t′)(b1, . . . , bn). The equation is valid if
B |= t = t′, i.e., for all b1, . . . , bn ∈ {0, 1} we have B |= (t = t′)(b1, . . . , bn). In the
sequel we refer to this approach as the pure algebraic approach.

It is common practice not to make the Σ-Structure B explicit. Instead, one
prefers to speak of truth assignments on the variables, which extend to truth as-
signments on the terms. The terms are called Boolean expressions or Boolean
functions. Consider a Boolean expression t(x1, . . . , xn). Satisfiability of t is de-
fined as the existence of a truth assignment for x1, . . . , xn such that t becomes
“true.” This corresponds to the satisfiability of the equation t = 1 in the pure
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algebraic approach. Validity of t is defined as t being “true” for all truth assign-
ments for x1, . . . , xn. This corresponds to the validity of the equation t = 1 in the
pure algebraic approach. Often a congruence relation ≈ ⊆ T × T called semantic
equivalence is established, where t ≈ t′ corresponds to the validity of the equa-
tion t = t′ in the pure algebraic approach. We are going to refer to this second
approach as the common algebraic approach.

The common algebraic approach is compatible with the pure algebraic ap-
proach in the sense of the following two observations:

1. The common algebraic approach does not introduce any syntactic objects or
notions that are not existent in the pure algebraic approach. It rather relaxes
semantics by defining notion in terms of Boolean expressions instead of
corresponding equations.

2. As for all concepts that we have introduced so far, both these approaches
can be straightforwardly translated into each other.

The algebraic propositional approaches, in either form, provide an excellent
framework for dealing with many issues arising in computer science and engi-
neering. This applies to questions that can be reduced to either satisfiability or
validity.

The question for satisfiability of a given term t is actually the famous SAT

problem, which is one of the most prominent examples for NP-complete problems.
Validity comprises, as discussed above, semantic equivalence t ≈ t′.

As we see, with the algebraic propositional approaches existential as well as
universal quantification are implicitly present. They remain, however, in the meta-
language in contrast to becoming part of the formal system. This implies an im-
portant restriction: It is impossible to tackle problems, where arbitrary quantifi-
cation information is part of the input, in a uniform way. This is, however, most
desirable as we shall see in Section 6 on application examples.

2.3 First-Order Logic Approach

On the basis of the pure algebraic approach, we consider first-order formulas over
our language Σ. First-order formulas F are recursively defined to be true, false,
equations, ¬(ϕ), where ϕ ∈ F , (ϕ1) σ (ϕ2) where σ ∈ {∧,∨,=⇒,⇐⇒} and ϕ1,
ϕ2 ∈ F , or Qx(ϕ), where Q ∈ {∃, ∀}, x ∈ V , and ϕ ∈ F . We allow ourselves to
refer to first-order formulas simply as formulas. A formula is called a quantifier-
free formula if it contains neither ∃ nor ∀.

As an example consider the quantified satisfiability problem QSAT, also known
as QBF (quantified Boolean formula). QSAT plays an important role by being
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complete for PSPACE in the same manner as SAT is complete for NPTIME: Given
a term t(x1, . . . , xn), the question is whether

B |= ∃x1∀x2∃x3 . . . Qnxn(t = 1),

where Qn ∈ {∃, ∀} depending on the parity of n.
For the common algebraic approach the situation is not quite that simple. Us-

ing first-order formulas would suddenly make visible the atomic formulas that
had been so carefully hidden. As a solution, one simply continues playing the
game, and writes ∃x1∀x2∃x3 . . . Qnxn(t). This is then called Boolean quantifica-
tion. This, however, introduces syntactic objects that are not present in the pure
algebraic approach thus invalidating observation no. 1 of our discussion on com-
patibility in the previous section.

Since our plan is to integrate propositional logic into a system based on pure
algebra, this syntactic compatibility is in fact crucial. So we decide for the pure
algebraic approach.

In addition, we optionally provide the view of the common algebraic approach
by means of a propositional wrapper. The basis for this is the existence of normal
forms for first-order formulas such that atomic formulas can be considered propo-
sitional variables. We are going to discuss the underlying theory for the wrapper
in the following section. Later on, in Section 5 on the implementation of REDLOG,
we shall revisit the wrapper in form of an optional software module that combines
implicit normal form computations with certain I/O-features.

3 Quantified-Propositional Formulas

A first-order formula ϕ is called propositional if it is quantifier-free, and all con-
tained equations are of the form x = 1, where x ∈ V . Correspondingly, we then
call these contained equations propositional variables. These propositional vari-
ables admit Boolean quantification by means of quantifying the contained formal
variables x like ∃x or ∀x. Formulas obtained from propositional formulas by such
quantifications are called quantified-propositional formulas.

Theorem 1 (Quantified-Propositional Normal Form) Let ϕ be a formula.

(i) There is a quantified-propositional formula ϕ′ such that B |= ϕ′ ⇐⇒ ϕ.

(ii) |ϕ′| = O(|ϕ|), where | · | denotes the word length.

(iii) ϕ′ can be computed from ϕ in time and space bounded by O(|ϕ|). More
precisely, constant space is sufficient.
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Proof For Part (i) observe that an equation b1 = b2 with b1, b2 ∈ T is equiva-
lent to (b1) ↔ (b2) = 1. We may thus w.l.o.g. assume that all equations in our
considered formula ϕ are of such a form. We show our claim by induction on
the number n of occurrences of function symbols from Σ in ϕ. If n = 0, then
the claim is trivial. Let there be n + 1 > 0 such occurrences. Then we can pick
a corresponding equation η, and equivalently replace it with a formula ψ as fol-
lows: If η is 0 = 1 or 1 = 1, then we set ψ := false or ψ := true, respectively.
If η is of the form ∼(b) = 1 with b ∈ T , then ψ := ¬(b = 1). Similarly, if η
is of the form (b1) � (b2) = 1 with b1, b2 ∈ T and � ∈ {&, |,→,↔}, then we
set ψ := (b1 = 1) σ (b2 = 1), where σ is straightforwardly derived from � by
mapping & to ∧, | to ∨, → to =⇒, and ↔ to ⇐⇒. In either case, this yields one
fewer function symbol in the result of our replacement. We can thus apply our
induction hypothesis.

For Part (ii), we first consider the initial step in Part (i) of normalizing equa-
tions. Denote the output of this by ϕ1. Since for each equation in ϕ, we obtain at
most 6 extra characters, we have |ϕ1| ≤ |ϕ|+ 6|ϕ| = 7|ϕ|. In the subsequent step,
we obtain at most 2 extra characters for each occurrence of a function symbol in
ϕ1. Hence,

|ϕ′| ≤ |ϕ1| + 2|ϕ1| = 3|ϕ1| ≤ 21|ϕ|.
For showing Part (iii) we give a more algorithmic version of the induction

proof above. Copyϕ, but write for a variable x, if it is not preceded by a quantifier,
the equation x = 1 and for characters listed in the first line of the following table
the character underneath:

0 1 ∼ & | → ↔ =
false true ¬ ∧ ∨ =⇒ ⇐⇒ ⇐⇒

We consider true and false to be one character each. Hence, length is only in-
creased when rewriting variables. We have |ϕ′| ≤ 3|ϕ1|, and ϕ′ is computed this
way in linear time and constant space. �

In order to emphasize the point of view that equations x = 1 in quantified-
propositional formulas are propositional variables, we allow ourselves to use cap-
ital letters X as an alternative notation for x = 1. Note that occurrences of vari-
ables directly after ∃ and ∀ always remain lower case.

As an example, consider the formula

∀x∀y
(
x = ∼y =⇒ ∀a(a& y = a& ∼x)

)
.

The following is a possible quantified-propositional normal form of this:

∀x∀y
(
(x = 1 ⇐⇒ ¬y = 1) =⇒ ∀a(a = 1 ∧ y = 1 ⇐⇒ a = 1 ∧ ¬x = 1)

)
.
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According to our convention to possibly view the equations as propositional vari-
ables, this formula would read as follows:

∀x∀y
(
(X ⇐⇒ ¬Y ) =⇒ ∀a(A ∧ Y ⇐⇒ A ∧ ¬X)

)
.

In the sequel, we will relax our notion of (quantified-)propositional formulas
a bit by representing negated propositional variables like ¬X as x = 0. Then for
every propositional formula there is an equivalent positive propositional formula,
i.e., an ∧-∨-combination of equations.

4 Simplification and Quantifier Elimination

In the past it has turned out that powerful simplification techniques are a crucial
prerequisite for efficient implementation of quantifier elimination. In [DS97b]
smart simplification, deep simplification and simplification with theory are in-
troduced in the context of ordered fields. All these techniques and concepts are
applicable as well to the framework discussed here.

4.1 Regular Quantifier Elimination

The Boolean Algebra B admits effective quantifier elimination by virtual substi-
tution [Wei88]: Let ψ be a quantifier-free formula. Then

B |=
( ∨
t∈{0,1}

ψ[t/x]
)
⇐⇒ ∃xψ and B |=

( ∧
t∈{0,1}

ψ[t/x]
)
⇐⇒ ∀xψ.

Several quantifiers are successively eliminated from a prenex input formula start-
ing with the innermost quantifier.

Theorem 2 (Complexity of Quantifier Elimination) Consider a first-order for-
mula of the form ϕ = Q1x1 . . . Qnxnψ where Q1, . . . , Qn ∈ {∃, ∀} and ψ is a
quantifier-free formula. Let ϕ′ denote a quantifier-free formula obtained by vir-
tual substitution such that B |= ϕ′ ⇐⇒ ϕ. Then

|ϕ′| = O(2n|ψ|) = 2O(|ϕ|),

where | · | denotes the word length. The bound 2O(|ϕ|) is also a bound on the time
and space of the computation.

Proof We show by induction on n that after the elimination of n quantifiers,
the size of the output is bounded by 2n(|ψ| + 5) − 5. For n = 0 this is triv-
ial. Consider now the elimination of the n + 1-st quantifier from Qn+1xn+1ϕn:
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By the induction hypothesis we have |ϕn| ≤ 2n(|ψ| + 5) − 5. Elimination yields
ϕn+1 = (ϕn[0/x]) � (ϕn[1/x]) with � ∈ {∨,∧} depending on Qn+1. We have

|ϕn+1| = 2|ϕn| + 5 = 2
(
2n(|ψ| + 5) − 5

)
+ 5 = 2n+1(|ψ| + 5) − 5.

The time for this computation is asymptotically dominated by successively
producing the intermediate results for each quantifier n times where n ≤ |ϕ|. This
imposes the bound |ϕ| ·2O(|ϕ|) = 2O(|ϕ|). The same observation holds for the space.
�

Quantifier elimination by virtual substitution might appear after all like a brute
force method, which simply tries all possible combinations of values for the quan-
tified variables. In the worst-case this actually happens. In our practical computa-
tions, however, it performs much better for various heuristic reasons:

• It is not always necessary to substitute both values 0 and 1 for a variable.
Suppose the considered matrix formula ψ is propositional and positive.
Then only those values in {0, 1} have to be substituted for x, with which
x actually occurs. For general formulas it is easy to compute with which
values x would occur in an equivalent positive propositional formula. Such
decisions on the basis of special forms without explicitly computing them
is generally a useful technique with virtual substitution.

• After each substitution, there is sophisticated simplification performed. As
a consequence, in non-artificial decision problems, it often happens than
the formula breaks down to a truth value after elimination of only a fraction
of the variables. One such example is the multiplexer series discussed in
Section 7.1.

• Within blocks of like quantifiers, the quantifiers can be equivalently inter-
changed. On the basis of this observation, quantifier elimination can greatly
be supported by choosing the “right” variable to be eliminated next. We
choose a strategy that has been successful with virtual substitution in sev-
eral contexts: We choose the variable that occurs most frequently within
the formula. The idea is that this increases the chance for simplification.
Such selection strategies can be evaluated by applying also the dual strat-
egy to benchmark examples for comparison. We have done so for most of
our examples, which we are going to discuss in Section 6 and Section 7.

The special case of quantifier elimination applied to the existential closure of
an equation t = 1 with t ∈ T is the satisfiability problem for Boolean formulas.
This problem is known to be NP-complete. From this point of view Theorem 2
states that virtual substitution is—in terms of classical complexity theory—an op-
timal choice as a quantifier elimination procedure.
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Similarly, the special case of quantifier elimination on the universal closure of
an equation t = 1 with t ∈ T is a decision procedure for validity of t. Quantifier
elimination on the universal closure of an equation t = t′ with t, t′ ∈ T is a
decision procedure for semantic equivalence.

Next, quantifier elimination straightforwardly comprises QSAT and other vari-
ants of this where the quantifiers are not strictly alternating.

In addition, there is a most interesting aspect of quantifier elimination, which
conceptually exceeds the range of possible applications listed above: Not all the
variables in the input formula have to be quantified. We give an example: On
input of

∃y
(
((x& ∼y) | ∼z) ↔ (y & z) = 1

)

quantifier elimination yields x = 0 ∧ z = 1. This is a necessary and sufficient
condition on the parameters x and z for the existence of such a y.

4.2 Extended Quantifier Elimination

With quantifier elimination by virtual substitution it is straightforward to keep
track of the particular test points that are substituted for the variables in the sub-
formulas of the final result. This idea is particularly interesting for the outermost
block of like quantifiers. It leads to a technique called extended quantifier elimi-
nation [Wei97] or quantifier elimination with answer.

Consider quantifier elimination for a formula ϕ = ∃x1 . . .∃xnψ , where ψ
possibly contains further quantifiers. Let ψ ′ be a quantifier-free equivalent for ψ ,
i.e, ψ ′ is an intermediate result of our elimination procedure. Then the final result
ϕ′ of the elimination is of the form

ϕ′ =
∨
i∈I
ψ ′
i ,

where each ψ ′
i is obtained from ψ ′ by substituting either 0 or 1 for each of the

x1, . . . , xn, say ψ ′
i = ψ ′[bi1/x1, . . . , bin/xn] with bi1, . . . , bin ∈ {0, 1}. Extended

quantifier elimination now outputs a set of guarded points instead of ϕ′:
{

(ψ ′
i , {x1 = bi1, . . . , xn = bin})

∣∣ i ∈ I }.
It is obvious that ϕ′ can be straightforwardly constructed from this. In addition,
we obtain the following information: Whenever an interpretation of the param-
eters satisfies some ψ ′

i , then the original ∃-quantified formula ϕ holds for this
interpretation, and the corresponding point x1 = bi1, . . . , xn = bin is one possible
choice of values for the quantified variables.

If the outermost block of quantifiers is a universal one, then we obtain the dual
information: Whenever some interpretation of the parameters does not satisfy
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some ψ ′
i , then the original ∀-quantified formula ϕ does not hold for this interpre-

tation. The corresponding point x1 = bi1, . . . , xn = bin is then one possible choice
for the quantified variables to obtain a counterexample.

5 Implementation

5.1 REDLOG and IBALP

REDLOG stands for “REDUCE logic” system [DS97a]. It provides an extension of
the computer algebra system REDUCE to a computer logic system implementing
symbolic algorithms on first-order formulas w.r.t. temporarily fixed first-order lan-
guages and theories. Such a choice of language and theory is called a context. The
work discussed here establishes a new such context IBALP. So far, the following
REDLOG contexts are available:

• OFSF (Ordered fields, standard form representation of terms).
These are real closed fields such as the real numbers with ordering. This
context was the original motivation for REDLOG. It is still the most impor-
tant and sophisticated one.

• ACFSF (Algebraically closed fields, standard form representation of terms).
These are algebraically closed fields such as the complex numbers.

• DVFSF (Discretely valued fields, standard form representation of terms).
The most prominent example for discretely valued fields are p-adic numbers
for some prime p with abstract divisibility relations.

• IBALP (Initial Boolean Algebras, Lisp prefix representation of terms).
These are Boolean algebras with two elements, which are uniquely deter-
mined up to isomorphisms.

The idea of REDLOG is to combine methods from computer algebra with logic
thus extending the computer algebra system REDUCE to a computer logic system.
In this extended system both the algebraic side and the logic side greatly benefit
from each other in numerous ways.

We summarize the REDLOG features and commands currently available for
IBALP in Table 1. The left hand side shows the mathematical core including
(extended) quantifier elimination according to Theorem 2, simplification, tableau
methods, and normal form computations [DS97b]. The right hand side collects
numerous useful utilities. For more detailed information we refer the reader to the
REDLOG user manual [DS99].
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Table 1: REDLOG quantifier elimination, simplification, normal forms, utilities.

Command Short Description
rlqe quantifier elimination
rlqea extended quantifier elimination
rlsimpl simplification
rlnnf negation normal form
rlpnf prenex normal form
rlcnf conjunctive normal form
rldnf disjunctive normal form
rltab semantic tableau
rlatab automated semantic tableau
rlitab iterative semantic tableau
sub syntactic substitution
rlmatrix formula matrix (drop prenex quantifiers)
rlall universal closure
rlex existential closure
rlatl list of atomic formulas
rlatml multiplicity list of atomic formulas
rlterml list of terms
rltermml multiplicity list of terms
rlfvarl list of free variables
rlbvarl list of bound variables
rlvarl list of variables
rlatnum number of atomic formulas
rlqnum number of quantifiers

The current version REDLOG 2.0 is an integral part of the computer algebra
system REDUCE 3.7. The work described here is part of the current development
version of REDUCE and will be included into the next release.

5.2 The Propositional Wrapper

Our new context IBALP contains a propositional wrapper as a component that can
be optionally activated. This propositional wrapper is in fact the implementation
of Theorem 1 plus the convention discussed thereafter to write the equations of
quantified propositional formulas as capital propositional variables.

The wrapper is activated by turning on two global switches: rlsimpl and
rlpcprint. The former causes all input and output to implicitly pass the stan-
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REDUCE 3.7, 15-Apr-1999, patched to 3-Feb-2003 ...

1: load redlog;

*** turned off switch raise

2: c1 := ex({h1,h2,h3},h1=˜(a & b) and h2=˜(a & h1) and h3=˜(b & h1) and
2: f=˜(h2 & h3));

c1 := ex h1 ex h2 ex h3 (h1 = ˜ (a & b) and h2 = ˜ (a & h1)

and h3 = ˜ (b & h1) and f = ˜ (h2 & h3))

3: rlqe c1;

(a = 1 and b = 1 and f = 0) or (a = 1 and b = 0 and f = 1)

or (a = 0 and b = 1 and f = 1) or (a = 0 and b = 0 and f = 0)

Figure 1: Same quantifier elimination as in Figure 2 but not using the propositional
wrapper.

REDUCE 3.7, 15-Apr-1999, patched to 3-Feb-2003 ...

1: load redlog;

*** turned off switch raise

2: on rlpcprint,rlsimpl;

3: rlpcvar H1,H2,H3;

4: c1 := ex({h1,h2,h3},h1=˜(a & b) and h2=˜(a & h1) and h3=˜(b & h1) and
4: f=˜(h2 & h3));

c1 := ex h1 ex h2 ex h3 (((H1 and (not(A) or not(B))) or (A and B and not(H1)))

and ((H2 and (not(A) or not(H1))) or (A and H1 and not(H2)))

and ((H3 and (not(B) or not(H1))) or (B and H1 and not(H3)))

and ((F and (not(H2) or not(H3))) or (not(F) and H2 and H3)))

5: rlqe c1;

(A and B and not(F)) or (A and not(B) and F) or (not(A) and B and F)

or (not(A) and not(B) and not(F))

Figure 2: Same quantifier elimination as in Figure 1 but using the propositional
wrapper.
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dard simplification routine (also called rlsimpl). This simplification includes,
but is not limited to, turning the input into quantified-propositional form. The
switch rlpcprint causes the output routine to print the capital X for an equa-
tion x=1. Accordingly, x=0 is translated to not(X). This works for variables
a, . . . , z. Further propositional variables can be declared using the keyword
rlpcvar. On the other hand, whenever a capital propositional variable is in-
put, there is internally the corresponding equation created, but hidden from the
user via rlpcprint.

Figures 1 and 2 show the computation of a quantifier elimination in REDLOG

with and without propositional wrapper. The choice whether to use the wrapper
or not depends on the particular application and on the preferences of the user.

6 Application Examples

We treat a variety of questions in mathematics, digital logic design and, later in
the following Section, 2-person games, to give an impression of the possible ap-
plication range of our work. All computations in this and the following Section
have been carried out on a 2 GHz Intel Pentium 4 using 128 MB of RAM.

6.1 Laws of Boolean Algebra

We can prove the following laws in less than 10 ms: identity, boundedness, com-
mutativity, associativity, distributivity, complement, uniqueness of complement,
the laws of involution, idempotency, absorption, and de Morgan’s laws.

For m, n ∈ N, the distributivity law can be generalized as follows:

ϕdist,m,n :=
m∧
i=1

Ai ∨
n∧
j=1

Bj ⇐⇒
m∧
i=1

n∧
j=1

(Ai ∨ Bj).

From this we build two sequences for benchmarking:

{∀(ϕdist,n,n)}n∈{1,...,100} and {∀(ϕdist,n,100)}n∈{1,...,100},

where ∀ denotes the universal closure. The timings can be found in Figure 3 and
Figure 4, respectively.

6.2 Digital Logic

Logical circuits are built of logical gates like the ones listed in Figure 5. For all
gates there except for the NOT-gate there are variants with more than two input
lines.
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Figure 3: Timings for ϕdist,n,n for n ∈ {1, . . . , 100} with the standard variable
selection strategy. The dual strategy has about the same timings.

In a combinational circuit, the outputs only depend on the current input sig-
nals. There is no information about previous input available within the circuit.
Such a circuit can be straightforwardly encoded as a first-order formula: We de-
note the output of each gate Gi with hi. In the special case that our considered hi
is an output line of the circuit, we use instead of hi the designated variable. For
each such hi or output variable we write down an equation describing it in terms
of the input lines of Gi, which are either input lines of the circuit or other hj. A
description of the entire circuit is then obtained as follows:

1. Construct a conjunction of all these equations.

2. Existentially quantify all inner nodes hi.

The described process can be automatized, e.g., on the basis of net list represen-
tations of circuits.

As an example, consider the circuit consisting of four NAND’s in Figure 6.
With the described method we derive the following description of our circuit:

ϕc1 := ∃h1∃h2∃h3

(
h1 = ∼(a& b) ∧ h2 = ∼(a& h1) ∧ h3 = ∼(b& h1) ∧
f = ∼(h2 & h3)

)
.

It is a typical textbook exercise ([LKM88], p.264, 5.4(b)) to show that this circuit
is equivalent to XOR. We can automatically prove this in less than 10 ms by
applying quantifier elimination to the following universal closure:

∀
(
ϕc1 ⇐⇒ f = (a | b) & ∼(a& b)

)
.
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Figure 4: Timings for ϕdist,n,100 for n ∈ {1, . . . , 100} with the standard variable
selection strategy (thick) and the dual strategy (thin).

Figure 5: NOT, AND, OR, NAND and NOR gate.

6.2.1 Surjectivity of a Circuit

We consider the half-adder circuit shown in Figure 6. This circuit can be described
with the following formula:

ϕha := ∃h1∃h2∃h3∃h4

(
h1 = ∼y ∧ h2 = ∼x ∧ h3 = x& h1 ∧ h4 = h2 & y ∧
s = h3 | h4 ∧ c = x& y

)
.

Our half-adder has two inputs x, y and two outputs s, c. Our question is now
whether s and c can take all possible combinations of values: For finding this out,
we apply extended quantifier elimination to the following formula:

∀x∀y∃s∃c(ϕha).

This yields false plus the answer c = 1, s = 1. Hence we know that these output
values cannot be obtained by any input values for x and y.

6.2.2 Boolean Output Function

We consider circuits with inputs i0, . . . , in and one output f . A Boolean output
function for such a circuit is a quantifier-free formula ϕ′ with free variables being
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Figure 6: A circuit consisting of four NAND’s (a) and a half-adder (b).
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Figure 7: Circuit with 10 gates.

a subset of {i0, . . . , in} and F ⇐⇒ ϕ′. As an example, consider the circuit in
Figure 7 ([LKM88], p.265, 5.8). The following formula describes this circuit:

ϕc2 := ∃h1 . . .∃h9(h1 = ∼x ∧ h2 = ∼z ∧ h3 = x& y ∧ h4 = ∼y ∧
h5 = h1 | h2 | h3 ∧ h6 = h3 | h2 | h4 ∧ h7 = x& h5 ∧
h8 = h5 & z& h6 ∧ h9 = h6 & y ∧ f = h7 | h8 | h9).

By substituting 1 for f and applying quantifier elimination plus DNF computa-
tion, we derive the following formula as Boolean output function for this circuit
(10 ms):

(x = 1 ∧ z = 0) ∨ (x = 0 ∧ y = 1 ∧ z = 0)

∨ (x = 1 ∧ y = 1 ∧ z = 1)

∨ (x = 0 ∧ y = 0 ∧ z = 1).

In the more general case that a Boolean circuit described by a formula ϕ has
several outputs f1, . . . , fm, the Boolean output function for the i-th output fi is

17



obtained by applying quantifier elimination to

∃f1 . . .∃fi−1∃fi+1 . . .∃fm(ϕ[1/fi]).

6.2.3 Analysis of Faulted Circuits

A well-established fault model for digital logic testing [Mic86] is the following:
By a manufacturing defect, some input line or the output line of a gate has constant
value 0 or 1. Such faults are called stuck-at-0 and stuck-at-1, or shortly S-A-0 and
S-A-1. This model dates back to the early 1960s [Eld59, Arm66]. The question
is as follows: Given a certain gate and a specification of a possible fault, what are
input values, such that a faulted value is visible at an output line?

We assume we have obtained the logical description ϕ of a circuit as described
above. To model an output S-A-k fault (k ∈ {0, 1}) at gate Gi, we drop the
quantifier ∃hi and the one component of the conjunction corresponding to Gi in
ϕ. We substitute k for for hi and call the result ϕS-A-k. Then we apply extended
quantifier elimination to the following formula:

∀(ϕ ⇐⇒ ϕS-A-k).

If a circuit has n gates and a total of m input and output lines, then after prenex
normal form computation such a formula has m + 2(n + (n − 1)) quantifiers. We
either obtain true, which means that the fault does not change the behavior of the
circuit for any input, or false, in which case we get values for the input lines, such
that the faulted circuit behaves differently from the good one. Again, it is clear
that this test can be automatized.

We demonstrate this technique using the circuit from Figure 7. Let us consider
an output S-A-1 fault at gate 5. This is the upper 3-input OR gate. The modified
formula reads as follows:

ϕc2,S-A-1 := ∃h1 . . .∃h4∃h6 . . .∃h9(h1 = ∼x ∧ h2 = ∼z ∧ h3 = x& y ∧ h4 = ∼y ∧
h6 = h3 | h2 | h4 ∧ h7 = x& 1 ∧
h8 = 1 & z& h6 ∧ h9 = h6 & y ∧
f = h7 | h8 | h9).

Extended quantifier elimination applied to ∀(ϕc2 ⇐⇒ ϕc2,S-A-1) yields false and
values x = 1, y = 0, and z = 1. Testing these input values, we indeed verify that
the good circuit outputs f = 0, but the circuit with S-A-1 fault at gate 5 outputs
f = 1. Hence x = 1, y = 0 and z = 1 is a suitable test pattern to detect an S-A-1
fault at gate 5.
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6.2.4 Active-HIGH SR-Latch

SR-latches are an example for an asynchronous sequential circuit in contrast to
the combinational circuits considered so far. The characteristic difference is that
in sequential circuits there are feedback connections from the outputs to the in-
puts. One consequence of this is that such circuits have a memory. In contrast to
combinational circuits the outputs are not longer a function of the inputs but also
depend on the current internal state of the device.

An SR-latch has two inputs s (set) and r (reset) and two outputs q and q ′. A
possible realization would be with two NOR gates as shown in Figure 8. The input
r = s = 1 is not admissible. The internal memory of the SR-latch is the state of
q. At any time, we have q′ = ∼q. If r = s = 0, then q remains in its current state,
which can be either 0 or 1. If s = 1, then we get q = 1, and if r = 1, then we get
q = 0, not matter what the previous state of q was.

The following formula describes the latch in the same way as just seen for
combinational circuits. In addition, it contains the above-mentioned restriction on
s and r:

ϕSRL := q = ∼(r | q′) ∧ q′ = ∼(s | q) ∧ ¬(r = 1 ∧ s = 1).

For ϕSRL we can immediately prove that q = ∼q′ since quantifier elimination
applied to the following formula yields true in less than 10 ms:

∀q∀q′∀r∀s(ϕSRL =⇒ q = ∼q′).

We are going to obtain a relation describing all possible combinations of inputs
and output, thus resembling the Boolean output function of combinational circuits.
For this, we eliminate the complementary counterpart q′ of q treating it like an
inner node. This corresponds to quantifier elimination on ∃q ′(ϕSRL). This plus
subsequent DNF computation yields after less than 10 ms altogether the following
result:

ϕ′ := (q = 1 ∧ r = 0) ∨ (q = 0 ∧ s = 0).
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Figure 9: A 4 × 1-multiplexer and the block diagram of a 2n × 1 multiplexer.

The following table lists the values of this ϕ′ for all choices of r, s, and q. When-
ever we have ϕ′ = 1, then this indicates a possible state of the latch, and vice
versa:

r 0 0 0 0 1 1 1 1
s 0 0 1 1 0 0 1 1
q 0 1 0 1 0 1 0 1
ϕ′ 1 1 0 1 1 0 0 0

7 Benchmarking

We give some examples from which we can systematically construct sequences of
increasingly difficult problems of the same shape for benchmarking.

7.1 A Sequence of Multiplexers

A 2n × 1-multiplexer is a combinational circuit that selects data from one of 2n

input lines i0, . . . , i2n−1 and routes it to a single output line f . To address the input
line, n selection lines s0, . . . , sn−1 are used. Furthermore, multiplexers usually
have an additional input line e to enable or disable the unit. In this example, the
convention is that a multiplexer is enabled if e = 0. See Figure 9 for a 4 × 1-
multiplexer.

Let σ(k, l) be the l-th bit in the binary representation of k ∈ N (counting starts
with the least significant bit). Then the following formula is a possible logical
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Figure 10: Interpolated computation times for the multiplexer series with standard
variable selection strategy (thick) and the dual variant (thin).

description of a 2n × 1-multiplexer:

ϕmux,n := f ⇐⇒
2n−1∨
k=0

(
i0 = 1 ∧ e = 0 ∧

n−1∧
l=0

sl = σ(k, l)
)

(n > 0).

The formula ϕmux,n contains 1 + 2n(2 + n) equations. One possible correctness
condition on such a multiplexer would be to ask, whether, assuming e = 0, the
value of f corresponds to that of some input ik (1 ≤ k ≤ 2n). This can be
expressed as follows:

ϕmuxcor,n := ∀
(
ϕmux,n ∧ e = 0 =⇒

2n−1∨
k=0

ik = f
)

(n > 0).

This provides us with a sequence (ϕmuxcor,n)n>0 of benchmark formulas of increas-
ing complexity. The formula ϕmuxcor,n has 2n + n + 2 variables. The number
of equations after computation of a quantified-propositional normal form can be
found in Table 2, where we summarize the performance of our quantifier elimi-
nation on this benchmark sequence. The computation times for both our variable
selection strategy and its dual variant are pictured in Figure 11. We see that our
strategy appears almost linear, while its dual is clearly exponential.

The following two correctness conditions for a 2n × 1 multiplexer guarantee
that it exactly meets its specification:

1. For all possible values of the selection lines s0, . . . , sn−1 there exists an input
line k such that for all possible values for the input lines i0, . . . , i2n−1 and e
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Table 2: Performance on the multiplexer benchmark series: n is the index, #Q
is the number of quantifiers, #ϕmuxcor,n is number of equations of the quantified-
propositional normal form, tGEN is the time required for automatically generating
this example, tQE is the time for quantifier elimination using our variable selection
strategy, dual tQE is the time for quantifier elimination using the dual strategy for
comparison.

n #Q #ϕmuxcor,n tGEN (s) tQE (s) dual tQE (s)
1 5 19 0 0 0
2 8 43 0 0 0
3 13 99 0 0 0
4 22 227 0 0 0
5 39 515 0 0 0.1
6 72 1155 0 0 0.8
7 137 2563 0 0.2 4.9
8 266 5635 0 0.6 40.5
9 523 12291 0.1 2.6 359.0

10 1036 26627 0.4 16.9 4618.5
11 2061 57347 1.4 134.8 81384.8
12 4110 122883 5.6 826.1 —
13 8207 262147 22.0 3669.8 —
14 16400 557059 125.9 12674.2 —

and f we have ik = f for the enabled multiplexer. The following formula,
which has 2n · (2n + 2) + n quantifiers, states this for n > 0:

ϕmuxcor1,n := ∀s0 . . .∀sn−1

2n−1∨
k=0

∀i0 . . .∀i2n−1∀e∀f
(
ϕmux,n ∧ e = 0 =⇒ ik = f

)
.

2. For all input lines k there exist values for the selection lines s0, . . . , sn−1

such that for all values for the input lines i0, . . . , i2n−1 and e and f we have
ik = f for the enabled multiplexer. This is expressed for n > 0 by the
following formula, which has (n + 2n + 2) · 2n quantifiers:

ϕmuxcor2,n :=
2n−1∧
k=0

∃s0 . . .∃sn−1∀i0 . . . ∀i2n−1∀e∀f
(
ϕmux,n∧e = 0 =⇒ ik = f

)
.

Timings for these two series are collected in Table 3.

22



Table 3: Performance on the second multiplexer benchmark series. Here ⊥ indi-
cates that the memory size of 128 MB was exceeded.

n #Q #ϕmuxcor1,n tQE (s) dual tQE (s)
1 9 30 0 0
2 26 124 0 0
3 83 568 0.3 0.5
4 292 2672 148.3 405.3
5 1093 12512 >6h >6h
6 4230 57792 — —

n #Q #ϕmuxcor2,n tQE (s) dual tQE (s)
1 10 30 0 0
2 32 124 0 0
3 104 568 0.6 9.9
4 352 2672 45.2 ⊥
5 1248 12512 6404.6 ⊥
6 4608 57792 ⊥ ⊥

7.2 A Sequence of QSAT Problems

Consider a quantifier-free formula ψ in CNF, containing at most the Boolean vari-
ables x1, . . . , xn. Then the following formula is in QSAT:

∃x1∀x2 . . . Qnxn(ψ).

Note that the strict alternation of quantifiers is not a restriction, as one can in-
troduce dummy variables that do not appear in ψ . Hence, up to equivalence of
formulas, our implementation in particular solves QSAT-problems.

QSAT-problems can be interpreted as 2-person games [Pap94]. Two players,
call them ∃ and ∀, move alternatingly by choosing a value 0 or 1 for the current
variable, and ∃ moves first. ∃ tries to make ψ “true,” while ∀ tries to make ψ
“false.” With this interpretation a QSAT formula is “true” iff ∃ has a winning
strategy.

We consider the following sequence of QSAT problems for n ∈ {1, . . . , 2000}:

ϕqsatnands,n := ∃x1∀x2 . . . Qnxn

(n−1∧
i=1

∼(xi & xi+1) = 1
)

The formula ϕqsatnands,n contains n variables and 2(n−1) equations after quantified-
propositional normal form computation. Interpreting such a formula, for fixed n,
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Figure 11: Timings for ϕqsatnands,n for n ∈ {1, . . . , 2000}. Variable selection plays
no role here; all quantifier blocks have length 1.

as a game as just described, ∃ has a winning strategy: By choosing 0 for every xi
(i odd) all NAND’s will become true, independently of ∀’s choice for xi+1.

We can verify this: Applying quantifier elimination to ϕqsatnands,n yields true
for any choice of n. See Figure 11 for timings for n ∈ {1, . . . , 2000}.

7.3 Competing with SAT and QSAT Solving

Our present system can not at all compete with state-of-the art solvers that are
specialized in SAT or QSAT [GNT01, MMZ+01, Rin99]. We have unsuccessfully
tried to solve the first instance of ii16 from the DIMACS benchmarks of SAT

problems and Rintanen’s QSAT benchmark BLOCKS3i.4.4. The former did
not finish within 6 hours. For the latter, the quantifier elimination exceeded the
memory of 128 MB.

This is a consequence of the enormous generality of our approach: In con-
trast to the above mentioned specialized systems, we can cope with free variables.
Moreover, the quantifier-free parts of our prenex input formulas need not be in
conjunctive normal form. Note that our method does not exploit the conjunc-
tive normal form in which the SAT and QSAT benchmarks are given, and that
conjunctive normal form computation possibly blows up the size of a formula
exponentially.
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8 Conclusions

We have shown how to embed propositional logic into a first-order context in
a syntactically clean way. This made it possible to apply first-order methods
(e.g. quantifier elimination), concepts (e.g. quantification) and existing generic
implementations (e.g. REDLOG’s generic quantifier elimination and simplification
procedures) for first-order languages and theories. The class of problems that can
be modeled and solved within our framework is a superset of QSAT and includes
many interesting applications, e.g. from logical circuit design and testing. Using
our implementation in REDUCE we have demonstrated the relevance of our ap-
proach and the capabilities of our system by various application and benchmark
examples.
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