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ABSTRACT
This paper provides a starting point for generic quantifier
elimination by partial cylindrical algebraic decomposition
(pcad). On input of a first-order formula over the reals
generic pcad outputs a theory and a quantifier-free for-
mula. The theory is a set of negated equations in the free
variables of the input formula. The quantifier-free formula
is equivalent to the input for all parameter values satisfy-
ing the theory. For obtaining this generic elimination pro-
cedure, we derive a generic projection operator from the
standard Collins–Hong projection operator. Our operator
particularly addresses formulas with many parameters thus
filling a gap in the applicability of pcad. It restricts de-
composition to a reasonable subset of the entire space. The
above-mentioned theory describes this subset. The approach
is compatible with other improvements in the framework
of pcad. It turns out that the theory contains assump-
tions that are easily interpretable and that are most often
non-degeneracy conditions. The applicability of our generic
elimination procedure significantly extends that of the corre-
sponding regular procedure. Our procedure is implemented
in the computer logic system redlog.
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1. INTRODUCTION
It is generally agreed that real quantifier elimination is an

important and powerful tool in symbolic computation. The
most elaborate implemented real quantifier elimination ap-
proach is that of partial cylindrical algebraic decomposition
(pcad), on which research is going on for 30 years now. An-
other important implemented approach is virtual substitu-
tion methods [22], which have been thoroughly investigated
by Weispfenning and his group during the last 15 years. The
advantages and disadvantages of these different approaches
can be summarized as follows:

Virtual substitution is restricted to input formulas that
obey certain restrictions on the maximal degree of the quan-
tified variables. They can be in theory generalized to arbi-
trary degrees [23], but this does not appear to be feasible
in practice. Much effort has been spent in developing and
efficiently implementing heuristic approaches to relax the
degree restrictions with the virtual substitution approach—
polynomial factorization is the most obvious idea. Though
this has been surprisingly successful, the principal problem
remains. The computed quantifier-free equivalents are often
quite redundant and hard to interpret, although there has
been considerable progress with the introduction of sophis-
ticated simplification techniques [8]. Virtual substitution is
doubly exponential in the number of quantifier changes, but
for fixed quantifier type only singly exponential in the num-
ber of quantifiers; most importantly, the number of param-
eters, i.e. free variables, does not contribute to complexity
in a relevant way.

pcad is a complete real quantifier elimination method.
That is, there are no restrictions on the possible input for-
mulas. The computed quantifier-free equivalents are simple
to understand, i.e., there are not many algebraic or logical
redundancies. On the negative side, pcad has a higher the-
oretical complexity than virtual substitution methods: It is
doubly exponential in all variables. This makes it particu-
larly inferior to virtual substitution methods for input with
many parameters.

From this point of view, there is a significant gap in the ap-
plicability of real quantifier elimination, which affects input
problems where there are on one hand quantified variables of
comparatively high degree and on the other hand compara-
tively many parameters. More precisely, it can be sufficient
for virtual substitution to fail that the total degree in the
quantified variables exceeds 1, and on the other hand there
is a famous example by Hong [14] with one existential quan-
tifier and three parameters where current implementations
of pcad use to fail.

240



In [9] generic quantifier elimination has been introduced
on the basis of real quantifier elimination by virtual sub-
stitution. This works as follows: On input of a first-order
formula ϕ over the reals, the generic quantifier elimination
procedure has two return values:

1. A theory Θ, i.e., a list of nontrivial negated equations,
also called assumptions, in the parameters of ϕ.

2. A quantifier-free formula ϕ′ in the parameters of ϕ.

The specification of the algorithm is that ϕ′ is a quantifier-
free equivalent to ϕ for all choices of parameters satisfying
Θ; formally

� |=
�

Θ −→ (ϕ′ ←→ ϕ).

Note that there are never equalities, trivial negated equal-
ities, or ordering inequalities assumed, and that there are
no Boolean connections other than conjunction possible be-
tween assumptions. As a consequence, the exception set, for
which ϕ′ is not correct, has measure zero within the param-
eter space. The idea behind generic quantifier elimination
is that the assumption of Θ supports the construction of
ϕ′ to such an extent that the range of practically feasible
problems is significantly extended.

With virtual substitution methods this has without doubt
been the case. This has been demonstrated in particular in
the area of automated geometry proving [9, 20] and phys-
ical network analysis [21]. In all applications examined so
far there have been two more most interesting observations
made:

• The assumptions Θ use to have a straightforward in-
terpretation within the real system modeled by the
input. For instance, conditions on an electric circuit
would not compare voltages with resistances.

• Even more strikingly, the assumptions often provide
additional non-degeneracy assumptions that are actu-
ally necessary to make the input a sufficiently precise
model of the real world. For instance, conditions on
a geometric configuration would state that a triangle
does not degenerate to a line.

We shall see a concrete examples for both these points in
Section 5.

Regarding the second point, in his famous monograph on
geometry proving [4], Chou has convincingly demonstrated
that for geometric configurations it is not practicable to de-
termine all necessary non-degeneracy conditions in advance.

Consequently, straightforward algebraic formulations of
geometric theorems are in most cases “false,” and this would
in fact be the result of any regular quantifier elimination
procedure applied to their universal closure. When leaving
the free variables in the sense of Chou unquantified, generic
quantifier elimination, in contrast, adds in almost all cases
considered so far the missing input specifications to Θ and
obtains “true” as ϕ′. From this point of view, generic quanti-
fier elimination is much more than a weaker form of regular
quantifier elimination. It is noteworthy that the Wu–Ritt
reduction techniques used by Chou yield conditions in the
parameters very similar to our assumptions.

This paper provides a starting point for generic quantifier
elimination by pcad:

1. We define a generic projection operator gproj, which
is derived from the standard Collins–Hong projection
operator projh [5, 12]. This operator is compatible
with the common variants of cell decomposition and
solution formula construction. On the other hand, it
even allows for a specifically optimized decomposition.

2. Our operator gproj particularly addresses formulas
with many parameters, and thus fills in the gap men-
tioned above: It will turn out that projection within
parameter space systematically allows for assumptions.
In bound variable space, in contrast, this requires cer-
tain configurations, which occur in practice with sig-
nificant frequency but not systematically.

3. Unlike all other improvements of projection operators
discussed in the literature so far, we do not only aim
at a coarser decomposition of the entire space but at
decomposing only a reasonable subset of this space.
Our approach is compatible with other improvements
in the framework of pcad.

4. Our projection operator gproj allows to restrict the
possible form of valid assumptions: One can, e.g., re-
strict to monomial assumptions.

5. We have implemented quantifier elimination by pcad

using our generic projection operator gproj. This al-
lows us to judge the empirical performance of our ap-
proach on practical examples.

6. Furthermore, it is possible with our implementation
to choose between generic quantifier elimination us-
ing our gproj and regular quantifier elimination using
projh. This ensures perfect comparability of compu-
tation times as well as of qualities of results between
our approach and the regular one. It turns out that
generic pcad dramatically exceeds the capabilities of
regular pcad.

7. As discussed with other methods above, we obtain as-
sumptions Θ that are easily interpretable and that are
most often non-degeneracy conditions.

For regular pcad it is best practice to first try McCal-
lum’s projection including Brown’s improvement. If then
decomposition fails, one would fall back on Collins–Hong
projection. Our observations apply to the McCallum–Brown
projection as well. Consequently our approach can be ex-
tended to adopt exactly the above-mentioned practice. We
expect our approach to be beneficial with the McCallum–
Brown as well, but further research and implementation will
be necessary to demonstrate this.

It is not hard to see that the introduction of our generic
projection operator does not lead in general to any better
upper worst-case complexity bounds compared to regular
pcad. We thus focus on demonstrating its applicability by
solving with our implementation of generic pcad examples
that are not solvable with its non-generic counterpart. Since
real quantifier elimination has during the past years been on
the edge between academic examples and real world prob-
lems, any step further is most promising.

In contrast to related work on strict polynomial inequali-
ties [19, 16], our approach does not require the input to be of
any particular syntactic form. Instead, we single out certain
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factors during projection when we have already abstracted
from the syntactic structure of the input formula.

Our implementations are part of the current development
version of the computer logic system redlog, which in turn
forms an integral part of the reduce distribution. So the
software described here will be published with the next re-
lease reduce 3.8.1 The framework of redlog offers the
crucial advantage that the work described here can be eas-
ily combined with a huge variety of already present services
and tools on first-order formulas. This affects the user in-
terface level as well as the implementation level.

The plan of this paper is a follows: Section 2 is the techni-
cal core of the paper. Here we define our generic projection
operator, which is derived from Hong’s modification in [12]
of Collins’ original projection operator in [5], and prove its
correctness. In Section 3 we address the consequences for
decomposition and solution formula construction when us-
ing our generic projection operator for performing generic
quantifier elimination. Section 4 gives a description of the
current status of the implementation of pcad within the
computer logic system redlog [7, 18]. In Section 5 we give
computation examples with this implementation. In Sec-
tion 6 we finally summarize and evaluate our work.

2. GENERIC PROJECTION OPERATOR
Throughout this section, we consider our prenex input

formula to contain variables x1, . . . , xr, where x1, . . . , xk

are free variables, which we also refer to as parameters, and
xk+1, . . . , xr are variables bound by quantifiers. By Ij we
denote �[x1 , . . . , xj ]. Consequently, Ir is the set of all poly-
nomials possibly occurring in our formula, and Ik is the set
of all polynomials containing only parameters. Let A gen-
erally denote a finite subset of Ir.

We recall the definition of Hong’s projection operator from
[12]:

projh(A) = proj1(A) ∪ proj
∗
2(A)

proj1(A) =
�

f∈A
f∗∈red(f)

�{ldcf(f∗)} ∪ psc(f∗, f∗′)
�

proj
∗
2(A) =

�
f,g∈A
f<g

�
f∗∈red(f)

psc(f∗, g).

For the motivation of our approach, consider the leading
coefficients added in proj1(A). In contrast to only adding
the leading coefficient of each polynomial in A, there are in
addition the leading coefficients of all reducta added. The
reason for this is that there will in general be choices for
variables such that these leading coefficients vanish. For
the relevant properties of the projection sets it is, however,
crucial to include leading coefficients for all possible choices
of variables including degenerate situations.

From this point of view, the construction of the chain of
reducta can be stopped as soon as the first constant lead-
ing coefficient appears; a fact, which is well-known in the
community. Our idea is now to go one step further: We are
going to stop this process as soon as a leading coefficient ap-
pears, which contains only parameters. We simply assume
this parametric leading coefficient to be nonzero. This as-
sumption, which is formally a negated equation, is added to
a theory Θ.
1Email inquiries to obtain the code from the authors in ad-
vance are welcome to redlog@fmi.uni-passau.de.

Similar observations hold for the chains of principal sub-
resultant coefficients computed in both proj1 and proj

∗
2.

After our generic projection we continue pcad. At the end
we have obtained on input of a first order formula ϕ both
a quantifier-free formula ϕ′ and the theory Θ mentioned
above. The result ϕ′ is correct for all choices of parameters
satisfying Θ. Formally, we have

� |=
�

Θ −→ (ϕ′ ←→ ϕ).

From this semantical description it is straightforward that
we do not want to admit any assumptions on bound vari-
ables. Recall that projection proceeds from bound variable
space to parameter space. Within the former it is good luck
to find parametric leading coefficients or principal subresul-
tant coefficients; within the latter they occur systematically.

We are now going to formalize our idea and prove its cor-
rectness.

For the definition of our generic projection operator, we
define a generic set of reducta as follows: If there is some j
such that redj(f) �= 0 and ldcf(redj(f)) ∈ Ik and there is

some j < j′ such that redj′(f) �= 0, then

µ = min
�
j
�� redj(f) �= 0 and ldcf(redj(f)) ∈ Ik

�
and

gred(f) =
�{ldcf(redµ(f)) �= 0}, { redi(f) | 0 ≤ i ≤ µ }�.

Else gred(f) = (∅,red(f)).
Similarly, we have a generic set of principal subresultant

coefficients: If there is j < min{deg(f),deg(g)} such that
pscj(f, g) ∈ Ik and there is j < j′ < min{deg(f),deg(g)}
such that pscj′(f, g) �= 0, then

µ = min
�
j < min{deg(f),deg(g)} �� pscj(f, g) ∈ Ik

�
and

gpsc(f, g) =
�{pscµ(f, g) �= 0}, {psci(f, g) | 0 ≤ i ≤ µ }

�
.

Else gpsc(f, g) = (∅, psc(f, g)).
As a final preparational step, we make the conventions

that

gldcf(f) =
�∅, {ldcf(f)}�

and that

(Θ, S) 	 (Θ′, S′) = (Θ ∪Θ′, S ∪ S′).

This allows us to define our generic projection operator
as follows:

gproj(A) = gproj1(A) 	 gproj
∗
2(A)

gproj1(A) =
�

f∈A
f∗∈gred(f)

�{gldcf(f∗)} 	 gpsc(f∗, f∗′)
�

gproj
∗
2(A) =

�
f,g∈A
f<g

�
f∗∈gred(f)

gpsc(f∗, g).

Note that all polynomials occurring as the left hand sides
of assumptions are as well part of the projection set. This
way, after computation of a sign-invariant decomposition,
every assumption will be either constantly valid or con-
stantly invalid over each cell.

We recall further definitions. We denote by V (A) the
real variety of A. For 0 ≤ j < r let S be a connected
subset of �j . Then Z(S) = S × � is the cylinder over S.
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We adopt the definition of a section of a cylinder from [1].
Then A is delineable on S if the portion of V (A) lying in
Z(S) consists of n disjoint sections of Z(S) for some n ≥ 0.
This notion of delineability, which is a bit weaker than the
original one by Collins, has been introduced in [1]. We shall
allow ourselves in the sequel to briefly say invariant instead
of sign-invariant.

For a set of conditions Θ in variables x1, . . . , xr and
0 ≤ j ≤ r let

�
j
Θ =

�
x ∈ �j

��� � |=�Θ(x, y) for some y ∈ �r−j
	
.

Lemma 1. Let A be a finite subset of Ij for j ≥ 2, and
say gproj1(A) = (Θ, P ). Let S be a connected subset of
�

j−1
Θ such that every element of P is invariant on S. Then

every element of A is either delineable or identically zero on
S.

Proof. Our assertion is a modification of Lemma 2 in
[12], for which the proof is given in Theorem 4 of [5]. We
modify this proof to derive a proof of our claim as follows:
Fix an element f(x1, . . . , xj) =


m
i=0 fix

i
j of A and a con-

nected subset S of �j−1
Θ such that f is not identically zero

on S.
Choose m ≥ 1 maximal such that fm �= 0 on S, and

choose k such that

g := redk(f) =

m�
i=0

fix
i
j .

Denote gred(f) = (Θ1, B), and assume Θ1 �= ∅, say

Θ1 =
�
ldcf(redµ(f)) �= 0

�
, B =

�
f, red(f), . . . , redµ(f)

�
.

Because of Θ1 ⊆ Θ and our assumption on S we have k ≤ µ.
Thus certainly g ∈ B and ldcf(g) ∈ P .

Choose l ≥ 1 minimal such that pscl(g, g
′) �= 0 on S.

Denote gpsc(g, g′) = (Θ2, S1). Assume Θ2 �= ∅, say

Θ2 =
�
pscν(g, g′) �= 0

�
, S1 =

�
psc0(g, g

′), . . . , pscν(g, g′)
�
.

In the same way as above we conclude that l ≤ ν, hence
pscl(g, g

′) ∈ S1.
We have shown that whenever we make assumptions and

cease to include further polynomials, then all polynomials
needed for the original proof that we are modifying are con-
tained in our generic projection set.

Lemma 2. Let A be a finite subset of Ij for j ≥ 2, and
say gproj1(A) = (Θ, P ). Let S be a connected subset of
�

j−1
Θ such that every element of P is invariant on S. Let
f and g be any two different polynomials in A. If the least
integer k such that

psck

�
f(α, xj), g(α, xj)

� �= 0

does not vary for α ∈ S, then the sections of Z(S) belonging
to f and g are either disjoint or identical.

Our Lemma 2 is a modification of Lemma 3 in [12]. The
basic proof ideas for the latter are given in Theorem 5 of [5].
Using similar modifications as in the proof of Lemma 1 one
obtains a proof also for our Lemma 2.

Theorem 3 (gproj is a projection operator).

Let A be a finite subset of Ij for j ≥ 2, and say gproj1(A) =
(Θ, P ). Let S be a connected subset of �j−1

Θ such that every
element of P is invariant on S. Then the following two
conditions hold:

1. Every element of A is either delineable or identically
zero on S.

2. The sections of Z(S) belonging to different f , g ∈ A
are either disjoint or identical.

Again, a proof can be obtained by adaption of the proof of
Theorem 1 in [12].

It is not hard to see that our generic projection remains
correct if we impose restrictions on the form of possible as-
sumptions. From an application point of view this is a most
interesting feature. The user might, e.g., wish to obtain only
monomial assumptions, require at least one variable to oc-
cur only linearly, impose other degree restrictions, or wish
to prohibit assumptions on certain parameters.

By successively liberating restrictions on possible assump-
tions, our generic projection set scales from the Collins–
Hong projection set towards Brown’s projection set [3]. In
fact, Brown’s projection can be regarded as implicitly mak-
ing assumptions even on bound variables without explicitly
creating any theory. Any mistakes resulting from this are,
however, detected during extension. From our point of view,
Brown pays the price that his decomposition, in contrast to
ours, can fail.

3. DECOMPOSITION AND
QUANTIFIER ELIMINATION

Starting with a prenex first-order formula ϕ, we extract
the polynomials obtaining a set A. Then we repeatedly ap-
ply our generic projection operator until only one variable is
left. During this process, the projection set grows monoton-
ically. All returned theories are united. The final result of
this projection phase is a pair (Θ, P ) consisting of a theory
and a projection set wrt. this theory.

We now turn to the necessary modifications of the decom-
position of r-space following the projection. For this we use
the basic decomposition algorithm of Collins [5], which is
known to be compatible with Collins–Hong projection. We
are going to comment on the compatibility of our modifica-
tion with pcad [6] at the end of this section. The crucial
feature of any such decomposition is that all polynomials
from the projection set P are invariant on all cells of the
decomposition.

Decomposition as known in the literature works as follows:
As a starting point, the trivial decomposition D0 of �0 is
used. Let 0 < j ≤ r, and let Dj−1 be a decomposition al-
ready computed for �j−1 . For each base cell B ∈ Dj−1 there
is a decomposition of B × � generated. This is called the
stack over B. Then the decomposition Dj of �j is obtained
as the union of all stacks.

For our needs we modify this algorithm as follows: Each
cell of the stack over a base cell B lies either fully within
�

j
Θ or fully within its complement. This follows from our

observation right after the definition of gproj in Section 2
that all left hand side polynomials of the assumptions are
contained in the generic projection set. We drop all cells that
do not lie within �

j
Θ . This has the same effect as applying

the common trial evaluation to ϕ∧�Θ instead of ϕ, where
ϕ is the matrix of the prenex input formula.

Our modified algorithm applied to a finite set P ⊆ Ir

results in a cylindrical decomposition of �r
Θ that is invariant

wrt. P . It is not too hard to derive from Theorem 3 the
following result, which states this observation more formally:
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Lemma 4. Let (Θ, P ) be the generic projection result of
A ⊆ Ir, let Dr be the decomposition of �r

Θ as computed by
our modified decomposition algorithm, and let Dr−1, . . . , D0

be the induced decompositions of �r−1
Θ , . . . , �0

Θ . For each
0 ≤ j ≤ r, let Pj denote the polynomials of P that contain
at most the variables x1, . . . , xj. Then for each 0 ≤ j ≤ r,
we have that each polynomial of Pj is invariant on each cell
C ∈ Dj.

Our next task is to derive from a cylindrical decomposition
a quantifier-free formula ϕ′ that is equivalent to our prenex
input formula

ϕ(x1, . . . , xk) = Qk+1xk+1 . . .Qrxrψ

with 0 ≤ k ≤ r, Qk+1, . . . , Qr ∈ {∀,∃}, and ψ quantifier-
free. Let A denote the polynomials of ϕ. We fix these nam-
ing conventions for the remainder of this section.

Lemma 5. Let (Θ, P ) denote the generic projection result
of A. Let Dr be an invariant cad of �r

Θ wrt. A. Then for
each j with k ≤ j ≤ r the truth value of

ϕj(x1, . . . , xj) := Qj+1xj+1 . . .Qrxrψ

is constant throughout all cells of Dj, where Dj denotes the
decomposition induced by Dr of �j

Θ .

Proof. Induction on j. For j = r we have ϕr = ψ.
According to Lemma 4 all polynomials of ψ are invariant
on all cells of Dr. The truth value of ψ is invariant as well.
Now assume that k ≤ j < r and that the assumption holds
for j + 1. Let C be a cell in Dj . All cells of the stack
above C have constant truth value on each of these cells by
assumption. According to whether Qj+1 is a universal or
an existential quantifier, ϕj has constant truth value on C,
viz. the conjunction or disjunction of the truth values of the
stack, respectively.

The above Lemma 5 guarantees for each cell C ∈ Dk

a constant truth value vC . As each cell C ∈ Dk is semi-
algebraic, there exists a quantifier-free defining formula δC

for this cell.

Theorem 6. Let Dk denote the decomposition induced by
Dr of �k

Θ . Then we have

� |=
�

Θ −→

 �

C∈Dk
vC=true

δC ←→ ϕ

�
.

As shown in [13], it is often successful to first try Hong’s
method for constructing a solution formula. This method
can fail, if the cad turns out not to be projection-definable.
In this case, by carefully adding derivatives of projection
factors, the resulting recomputed cad will eventually be
projection-definable [2]. Thus our method can be consid-
ered complete.

Concentrating on essentials, we have described our generic
quantifier elimination in terms of traditional, i.e. non-partial,
cad. Our approach is obviously fully compatible with pcad

as described by Collins and Hong in [6] including all im-
provements discussed there.

We conclude this section with an important observation:
With generic quantifier elimination by virtual substitution
it is straightforward to extend the approach to allow starting
with an external theory instead of the empty set [9]. The

same holds for theory-based simplification techniques [8].
These external conditions are used in the same way as the
theory implicitly generated by the procedures. It is most
tempting but not correct to straightforwardly extend this
idea to our framework here. The crucial assumption for
our modified decomposition that the assumptions are truth
invariant on each cell would be violated by this.

4. IMPLEMENTATION
Our generic pcad is implemented within the current de-

velopment version of the computer logic system redlog [7]
based on reduce. redlog is a regular part of the reduce

distribution. So the software described here will be pub-
lished with the next release of reduce. The framework of
redlog offers the crucial advantage that the work described
here can be easily combined with a huge variety of already
present algorithms on and utilities for first-order formulas.
This affects the user interface level as well as the implemen-
tation level.

While redlog exists for already 10 years now, the devel-
opment of pcad within this framework is rather new. It
started with the efficient implementation of algebraic num-
bers in 2001 [18]. We now give an overview on the current
status of our pcad implementation. This implementation
forms the basis for the generic variant described in this ar-
ticle.

For the projection phase, we have the operators avail-
able proposed by Collins [5], Hong [12], McCallum [17], and
Brown [3]. We use a modularized approach such that it is
easy to make available possible variants of projection oper-
ators discussed in the literature. In addition we can easily
define combined projection operators: Such combined pro-
jection operators apply various projection operators choos-
ing them according to the levels of polynomials. It is pos-
sible to interactively manipulate these projection sets. The
decomposition phase employs partial decomposition as pro-
posed by Hong, including his improvements, which are trial
evaluation and propagation below free variable space [6]. For
the solution formula construction we use Hong’s version de-
scribed in [13].

We finally recall that redlog contains powerful simpli-
fiers [8]. We use these simplifiers in two different ways:
First, instead of blindly making assumptions, we conser-
vatively check whether a desired non-zeroness follows from
assumptions already made before. Second, we obtain by
simplification a more concise theory for output at the end.

5. COMPUTATION EXAMPLES
All computations have been performed on a 933 MHz Intel

Pentium III under Linux using 128 MB ram. All timings
are cpu times including garbage collection times.

5.1 Inverting Operation Amplifier
We revisit an example from [10, 21]. The inverting op-

eration amplifier in Figure 1 is described by the following
set of equations. This description has been automatically
generated from a graph-like description of the circuit using
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Figure 1: An inverting operation amplifier circuit

the mathematica-based system Analog Insydes [11]:

v1 = v1

v2 = −vpm op1

v3 = vog op1

v1 + iv0r1 = v2

v2r1 + v2r2 = v3r1 + v1r2 + ipm op1r1r2

v3 + iog op1r2 = v2

vog op1 = vpm op1x
2
op1

v2
sx

2
op1 + Av2

og op1 = Av2
s

ipm op1 = 0.

The aim is to determine the output voltage v3 as a function
of the input voltage v1 . The amplification factor A, the sup-
ply voltage vs, and the resistances r1 and r2 are parameters.
All other variables

vpm op1, iog op1, ipm op1, iv0, v1, v2, vog op1, xop1

have to be existentially quantified.
In [10] it had been tried to determine a solution via com-

putation of an elimination ideal basis, where it was for prin-
cipal reasons not possible to exclude certain so-called par-
asitic solutions. The problem has then been satisfactorily
solved in [21] using generic quantifier elimination by vir-
tual substitution. For our purposes here, we consider it an
excellent benchmark example for the decomposition of a 14-
dimensional space. The 14 variables partition into 6 exis-
tentially quantified variables and 8 parameters; it should
be mentioned that the elimination of one of the quantified
variables, viz. v1, is in fact trivial.

The projection order for all computation variants on this
example discussed in the sequel is as follows:

vpm op1→ iog op1→ ipm op1→ iv0→ v1→ v2→
vog op1→ xop1→ | A→ vs→ v1→ r2→ v3→ r1→ .

By placing “|” we indicate the beginning of the parameter
space.

Using projh, the size of the projection set develops as
follows:

9→ 12→ 14→ 16→ 17→ 20→
30→ 42→ | 78→ 375→ ⊥ (> 104 min).

That is, there are 9 input factors before the projection of
vpm op1. This first projection step results in 12 factors alto-
gether before the projection of iog op1, etc. After 104 min
the computation aborts during the projection of vs due to
exceeding the chosen memory size of 128 MB.

Using gproj, we successively obtain projection set cardi-
nalities as follows:

9→ 12→ 13→ 15→ 15→ 16→
18→ 26→ | 32→ 35→ 35→ 35→ 35 (870 ms).

During this projection, there is in addition to the pro-
jection factors the following theory of 13 negated equations
generated:

�
4A2r21v

2
3 + 8A2r1r2v1v3 + 4A2r22v1

2 + r21v
2
s +

2r1r2v
2
s + r22v

2
s �= 0,

Ar1v
3
3 − Ar1v3v2

s + Ar2v1v
2
3 − Ar2v1v2

s +

r1v3v
2
s + r2v3v

2
s �= 0,

Ar1v
3
3 − Ar1v3v2

s + Ar2v1v
2
3 − Ar2v1v2

s −
r1v3v

2
s − r2v3v2

s �= 0,

Ar1v3 + Ar2v1 + r1v3 + r2v3 �= 0,

A �= 0,

r1v3 + r2v1 �= 0,

r1 + r2 �= 0,

r1 �= 0,

r2 �= 0,

v3 + vs �= 0,

v3 − vs �= 0,

v3 �= 0,

vs �= 0
�
.

Recall that the theories which we give here have undergone
some simplification. There have been possibly more than 13
assumptions made during projection.

Among the assumptions in the theory, we find typical non-
degeneracy conditions: resistances like r1, r2 can, of course,
never be zero in reality; the output voltage v3 can naturally
never reach the supply voltage vs.

The entire generic pcad finishes after 12 min yielding the
quantifier-free result “false.” This is a bit surprising. The
reason is that the algebraic equation describing the behavior
of the circuit is actually the negation of the third assumption
in the theory.

Instead of going into details about the physical facts that
could be derived in this situation, we continue seeking for a
straightforward result. For this we once more use gproj but
now make use of the important feature to restrict the form
of admissible assumptions for the theory: We admit only
monomial assumptions. This way, we successively obtain
the following cardinalities of projection sets:

9→ 12→ 13→ 15→ 15→ 16→
19→ 26→ | 32→ 35→ 35→ 35→ 35 (230 ms).

In addition, we obtain the following theory with 5 negated
equations:

{A �= 0, r1 �= 0, r2 �= 0, v3 �= 0, vs �= 0}.
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Figure 2: The x-axis ellipse problem

On the basis of this projection, generic pcad finishes after
12 min. This time we obtain a quantifier-free result contain-
ing 408 atomic formulas. Here we obviously suffer from our
still preliminary solution formula construction code. Sub-
stitution of reasonable values for the parameters A, r1, r2
and subsequent simplifications indicate, however, that this
formula actually describes the desired solution derived in
[21].

5.2 X-Axis Ellipse Problem
The problem, which has been suggested by Lazard in [15],

is to write down conditions such that the ellipse

(x− c)2
a2

+
(y − d)2

b2
− 1 = 0

is inside the circle x2 + y2 − 1 = 0. We treat the special
case d = 0; compare Figure 2. Our input formula reads as
follows:

∀x∀y�b2(x− c)2 + a2y2 − a2b2 = 0 −→ x2 + y2 − 1 ≤ 0
�
.

Due to clearing denominators, this description includes de-
generate cases of exactly the sort observed by Chou [4] to
be inevitable in general.

The projection order is
y→ x→ | c→ b→ a→. With the

regular projection operator projh, we successively obtain
intermediate projection sets of the following sizes:

2→ 9→ | 18→ 28→ 32 (20 ms).

On the basis of this projection set, regular pcad succeeds
after 1 min with a quantifier-free equivalent containing 4234
atomic formulas.

With our generic projection operator gproj, we obtain,
in contrast, the following intermediate projection set sizes:

2→ 9→ | 16→ 24→ 24 (10 ms).

In addition, we obtain the following theory:

{a+ b �= 0, a− b �= 0, a �= 0, b �= 0}.
On this basis, generic pcad returns after 7 s a quantifier-free
formula containing 448 atomic formulas.

We next analyze the situation when using gproj but ad-
mitting only monomial assumptions. Here we obtain the

projection set sizes

2→ 9→ | 17→ 25→ 25 (10 ms)

together with the theory

Θ = {a �= 0, b �= 0, c �= 0}.
On this basis, generic pcad yields after 8 s a quantifier-free
formula ϕ′ with 578 atomic formulas. Note that a �= 0 and
b �= 0 are obviously non-degeneracy conditions.

We finally use Θ and ϕ′ obtained by this last generic pcad,
and complete it to a quantifier-free equivalent of the input
formula. For this we additionally treat the three cases ex-
cluded by Θ. Applying regular pcad to the original problem
with 0 substituted for a, we obtain “false” in less than 10 ms.
The same holds for the case b = 0. For the case c = 0 we ob-
tain in 240 ms a quantifier-free equivalent ϕ′

c with 76 atomic
formulas. Combining these results, we have

� |=
���

Θ ∧ ϕ′
�
∨ (c = 0 ∧ ϕ′

c)
�
←→ ϕ.

Our quantifier-free formula obtained by one generic pcad

plus three regular pcad’s on special cases contains 3+578+
1 + 76 = 658 atomic formulas. It requires an overall com-
putation time of less than 9 s. This is a considerable im-
provement compared to the straightforward pcad with 4234
atomic formulas in 1 min.

6. CONCLUSIONS
We have defined a generic projection operator for pcad

and described how to perform generic quantifier elimina-
tion on the basis of this operator. Our techniques are im-
plemented within the computer logic system redlog. By
means of two highly non-trivial quantifier elimination ex-
amples, we have demonstrated that our generic approach
has a significantly extended application range compared to
regular pcad. This particularly affects input formulas with
polynomials of high degree and many parameters thus fill-
ing a gap in the applicability of real quantifier elimination
techniques.
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