
Extending Real Quantifier Elimination by Cylindrical
Algebraic Decomposition to Get Answers

Andreas Seidl

University of Passau, Germany
seidl@fmi.uni-passau.de

http://www.fmi.uni-passau.de/~seidl/

Abstract. We show how the cylindrical algebraic decomposition (cad) method for real
quantifier elimination (qe) can be extended to provide answers, i.e. sample solutions for
variables of a leading block of existential quantifiers, thus providing more and interesting
information. In the general case, where there are free variables, these answers are in general
parametric. For the dual case, i.e. for formulas with leading universal block of quantifiers,
we get parametric counter-examples. The main benefit over a virtual substitution (vs) based
approach is that there are no degree restrictions on the input.

1 Introduction

Real quantifier elimination (qe) is a versatile tool for solving a wide range of problems. Such
problems are modeled as a first-order formula over the language of ordered rings. Real qe finds
for a given formula a simpler quantifier-free one, which is equivalent over the reals, thus solving
the problem. Applications include analysis of partial differential equations [9], control theory [1,
11], theoretical mechanics [10], motion planning [20, 19, 7], diagnosis of electrical networks [15],
computer aided design and real implicitation [16, 14].

There exists a variety of methods for real qe. Methods that have been implemented and are
available are cylindrical algebraic decomposition [3], virtual substitution of test points [17] and a
method based on parametric real root counting [4], which is now called Hermitian qe [8]. All these
methods are implemented and available within the computer logic system redlog [5], which is
part of the computer algebra system reduce.

It has turned out that the virtual substitution (vs) method and the cylindrical algebraic decom-
position (cad) method complement each other. The vs method can cope with many parameters,
but has degree restrictions. The cad method, in contrast, has no degree restrictions, but parame-
ters contribute to the complexity in the same way as quantified variables. For practical purposes
it has turned out that having both methods available and combining them [12] results in most fast
and successful [13] computations for very large problems.

For the virtual substitution method, an interesting extension has been developed [18]. This
method was extended to give sample parametric answers for values of the variables of a leading
block of existential quantifiers. This has turned out to be very useful in practice, e.g. for error
diagnosis in electrical networks [15] and for collision problems [14].

This paper deals with extending the cad method for real qe to give, next to a quantifier-free
equivalent formula, answers. In this paper:

– We motivate that sometimes one would like to get more information out of qe than just an
equivalent formula, e.g. sample values for certain variables.

– We demonstrate that prior progress was made to extend the virtual substitution method for
real qe to give answers. Due to limitations on the vs method, however, qe with answers was
so far not applicable to all problems over the reals.

– We introduce the cad method for real quantifier elimination and show how the cad method
can be exploited to provide answers.

– By extending the cad method we lift the limitations on the applicability of extended quantifier
elimination.

– We explain how, by duality, one can get parametric counter-examples for formulas, which have
an outermost block of universal quantifiers.

2 Andreas Seidl

2 Motivating Examples and Prior Work

We look at some examples to give an impression on how real quantifier elimination can be used to
model and solve a problem, to demonstrate prior progress made to extend the virtual substitution
method to give answers, and to motivate the suggested improvement.

2.1 Solving a Tangram Style Puzzle

D

 (d1,d2)

A B

C

 (a1,a2) (b1,b2)

 (c1,c2) (0,0)

S

Fig. 1. Four small squares (left) and a big square (right)

Consider the following puzzle. There are four small squares A,B,C,D of diameter 2 and one
square of diameter 4. The squares are arranged as can be seen in Figure 1. Every edge is parallel to
the bisecting line of the first and third, or, of the second and fourth quadrant. More precisely, the
position of, say, the square A in the real plane is given by the corner points (a1, a2), (a1−1, a2 +1),
(a1, a2 + 2) and (a1 + 1, a2 + 1). The position of the big square S is given by (0, 0), (−2, 2), (0, 4)
and (2, 2). The challenge is to decide, whether the small squares fit by translation into the big one
without overlapping each other.

Let us formulate this problem in first-order logic. First of all, we need a formula describing
whether a point (x1, x2) lies within the small square A. Its relative position is given by (a1, a2).

ϕA ≡ a1 + a2 − x1 − x2 + 2 > 0 ∧ a1 + a2 − x1 − x2 < 0 ∧
a1 − a2 − x1 + x2 − 2 < 0 ∧ a1 − a2 − x1 + x2 > 0

Similarly, one finds formulas ϕB , ϕC , and ϕD. For the big square S

ϕS ≡ x1 + x2 − 4 < 0 ∧ x1 + x2 > 0 ∧ x1 − x2 + 4 > 0 ∧ x1 − x2 < 0

is appropriate. Note that we have to consider open objects without border.
The squares A, B, C, D lie within S, for fixed (a1, a2), (b1, b2), (c1, c2), (d1, d2), iff

(ϕA ∨ ϕB ∨ ϕC ∨ ϕD) −→ ϕS

for all (x1, x2). Furthermore, the squares A, B, C, D do not overlap each other, iff

¬(ϕA ∧ ϕB) ∧ ¬(ϕA ∧ ϕC) ∧ ¬(ϕA ∧ ϕD) ∧ ¬(ϕB ∧ ϕC) ∧ ¬(ϕB ∧ ϕD) ∧ ¬(ϕC ∧ ϕD)

Altogether the problem can be stated as follows:
ϕ :≡ ∃a1∃a2∃b1∃b2∃c1∃c2∃d1∃d2∀x1∀x2(¬(a1 + a2 − x1 − x2 + 2 > 0 ∧ a1 + a2 − x1 − x2 <

0∧a1 −a2 −x1 +x2 − 2 < 0∧a1 −a2 −x1 +x2 > 0∧ b1 + b2 −x1 −x2 +2 > 0∧ b1 + b2 −x1 −x2 <
0∧b1−b2−x1 +x2−2 < 0∧b1−b2−x1 +x2 > 0)∧¬(a1 +a2−x1−x2 +2 > 0∧a1 +a2−x1−x2 <
0∧a1 −a2 −x1 +x2 − 2 < 0∧a1 −a2 −x1 +x2 > 0∧ c1 + c2 −x1 −x2 +2 > 0∧ c1 + c2 −x1 −x2 <
0∧c1−c2−x1 +x2−2 < 0∧c1−c2−x1 +x2 > 0)∧¬(a1 +a2−x1−x2 +2 > 0∧a1 +a2−x1−x2 <
0∧a1 −a2 −x1 +x2 −2 < 0∧a1 −a2 −x1 +x2 > 0∧d1 +d2 −x1 −x2 +2 > 0∧d1 +d2 −x1 −x2 <
0∧d1−d2−x1 +x2−2 < 0∧d1−d2−x1 +x2 > 0)∧¬(b1 +b2−x1−x2 +2 > 0∧b1 +b2−x1−x2 <
0∧ b1 − b2 −x1 +x2 − 2 < 0∧ b1 − b2 −x1 +x2 > 0∧ c1 + c2 −x1 −x2 +2 > 0∧ c1 + c2 −x1 −x2 <

Extending Real Quantifier Elimination by Cylindrical Algebraic Decomposition to Get Answers 3

0∧c1−c2−x1 +x2−2 < 0∧c1−c2−x1 +x2 > 0)∧¬(b1 +b2−x1−x2 +2 > 0∧b1 +b2−x1−x2 <
0∧ b1 − b2 −x1 +x2 − 2 < 0∧ b1 − b2 −x1 +x2 > 0∧d1 +d2 −x1 −x2 +2 > 0∧d1 +d2 −x1 −x2 <
0∧d1−d2−x1 +x2−2 < 0∧d1−d2−x1 +x2 > 0)∧¬(c1 +c2−x1−x2 +2 > 0∧c1 +c2−x1−x2 <
0∧ c1 − c2 −x1 +x2 − 2 < 0∧ c1 − c2 −x1 +x2 > 0∧d1 +d2 −x1 −x2 +2 > 0∧d1 +d2 −x1 −x2 <
0∧d1−d2−x1+x2−2 < 0∧d1−d2−x1+x2 > 0)∧(((a1 +a2−x1−x2+2 > 0∧a1+a2−x1−x2 <
0∧a1−a2−x1 +x2−2 < 0∧a1−a2−x1 +x2 > 0)∨ (b1 + b2−x1−x2 +2 > 0∧ b1 + b2−x1−x2 <
0∧ b1− b2−x1 +x2−2 < 0∧ b1− b2−x1 +x2 > 0)∨ (c1 + c2−x1−x2 +2 > 0∧ c1 + c2−x1−x2 <
0∧ c1− c2−x1 +x2−2 < 0∧ c1− c2−x1 +x2 > 0)∨ (d1 +d2−x1−x2 +2 > 0∧d1 +d2−x1−x2 <
0∧d1−d2−x1+x2−2 < 0∧d1−d2−x1+x2 > 0)) −→ (x1+x2−4 < 0∧x1+x2 > 0∧x1−x2+4 >
0 ∧ x1 − x2 < 0))).

Generating such formulas by hand can be a tedious and error-prone task. Therefore the author
has implemented a package tangram. This package was written to aid the formulation of tangram
style problems. It allows to easily create formulas describing convex objects, which have a polygonal
outline. In addition, based on already defined shapes, a formula saying that certain small shapes
fit into a bigger shape without overlapping each other, can be produced. The above formulas were
generated by this software.

Let us now apply qe to this problem formulation ϕ. We derive true with the virtual substitution
method. Although this is the correct answer, we wish to get more information. Where do we have
to place the small shapes? This is where extended qe, or qe with answers comes into the game.

For the virtual substitution method, prior research [18] has shown that for the outermost block
of quantifiers one can get sample values in the existential case or counter-examples in the universal
case for the according variables. For our example, the virtual substitution method yields true and
the sample values

a1 = 0 , a2 = 2 , b1 = 0 , b2 = 0 , c1 = 1 , c2 = 1 , d1 = −1 , d2 = 1.

2.2 A Parametric Example

Variables, which are not within the scope of a quantifier, are called free variables or parameters.
The preceding example was a closed formula, i.e. a formula without free variables. For such an
example we can get concrete values as answers. If there are parameters such answers will have to
be parametric as well in general.

Past research for the virtual substitution method showed that there is a natural way for this
method to deliver the parametric answers [18], thus this method is not restricted to decision
problems.

Consider the following example. The formula ϕ :≡ ∃x(ax2 + bx+ 1 = 0) asks for conditions on
the parameters a, b such that the quadratic polynomial ax2 + bx+1 has a real root. qe by vs with
answers returns three guarded points:(

4a− b2 ≤ 0 ∧ a �= 0,

(
x =

−√−4a+ b2 − b

2a

))
(

4a− b2 ≤ 0 ∧ a �= 0,

(
x =

+
√−4a+ b2 − b

2a

))
(
a = 0 ∧ b �= 0,

(
x =

−1
b

))
.

This tells us not only that 4a− b2 ≤ 0∧ a �= 0∨ a = 0∧ b �= 0 is equivalent to ax2 + bx+ 1 having
a real root. It tells us in addition what such a root x looks like in the two cases 4a− b2 ≤ 0∧a �= 0
and a = 0 ∧ b �= 0.

2.3 Finding Extraneous Points

Consider the parametric curve (f1, g1) with

f1(t) = −6t4 − 63, g1(t) = 92t3 + 70t2.

4 Andreas Seidl

By computing the resultant ρ of x− f1 and y− g1 wrt. t one can get an implicit description of this
parametric curve. Such an description is often not exact. More precisely, the graph

{(x, y) ∈ R
2|exists t ∈ R such that x− f1(t) = 0 and y − g1(t) = 0}

of the parametric curve is often a proper subset of the real variety of {ρ}, i.e. the set

{(x, y) ∈ R
2|ρ(x, y) = 0}.

To get an exact real implicit representation, we apply real quantifier elimination to

∃t(x = −6t4 − 63 and y = 92t3 + 70t2)

and derive

8954912x3 − 1777440x2y + 1710485868x2 + 44100xy2 − 223957440xy + 108895082184x+
27y4 + 2778300y2 − 7054659360y + 2310620648364 = 0 and x+ 63 ≤ 0

To do this we need the cad method, as the vs methods fails due to degree restrictions. The result
is equivalent to

ρ = 0 and x ≤ −63

At this point, quantifier elimination with answers could help us to find possible extraneous points,
which lie in the real variety of ρ, but not in the graph of the given parametric curve.

These examples make it obvious that for decision problems as well as for parametric problems
getting answers out of quantifier elimination in addition to quantifer-free equivalents is highly
desirable. Furthermore, getting answers from the cad method is desirable in particular, due to
limitations of the vs method, as the last example showed.

3 QE with Parametric Answers

We want to specify now what the result of qe with answers is. From now on we assume the input
formula

ϕ(x1, . . . , xk) ≡ ∃xk+1 · · · ∃xlQl+1xl+1 · · ·Qrxrψ

to be in prenex normal form. The input formula has x1, . . . , xk as free and xk+1, . . . , xr as bound
variables. For each k + 1 ≤ j ≤ r the symbol Qj denotes xj ’s quantifier. We furthermore assume
that Ql+1 is a universal quantifier. So (xk+1, . . . , xl) is the leading block of existentially quantified
variables of maximal length.

3.1 Specification

The output of qe with answers is specified to be a finite set of guarded points [6]

{(ψ′
i, (xk+1 = bi,k+1, . . . , xl = bi,l))|i ∈ I}.

Here the ψi’s are quantifier-free formulas, and bi,j is, for some i and k + 1 ≤ j ≤ l, a term which
contains at most the variables x1, . . . , xj−1. For this term a slight extension of the language of
ordered rings will be needed.

A guarded point (ψ, (xk+1 = bk+1, . . . , xl = bl)) can be viewed to define a partial map γ : R
k →

R
l−k: Given values (a1, . . . , ak) ∈ R

k, such that R |= ψ(a1, . . . , ak), we can successively compute
ak+1, . . . , al in the following way: Let us assume that ak+1, . . . , aj are already computed for a
k ≤ j < l, and now we want to compute aj+1. We substitute in the term bj+1 the values a1, . . . , aj

for the variables x1, . . . , xj . This yields a term without free variables, which can be evaluated in R

to aj+1.
After detailing the syntactical definition, we specify how the semantics of the output of qe with

answers should be. There are two conditions.

Extending Real Quantifier Elimination by Cylindrical Algebraic Decomposition to Get Answers 5

(C1) Quantifier-free formula. We want to easily construct from the set of guarded points a
quantifier-free formula, which is equivalent to the input formula:

R |= ϕ↔
∨
i∈I

ψ′
i.

(C2) Example solution. For every guarded point (ψ, (xk+1 = bk+1, . . . , xl = bl)) in the output set
and every (a1, . . . , ak) ∈ R

k with R |= ψ(a1, . . . , ak), we want to have

R |= Ql+1xl+1 · · ·Qrxrψ(a1, . . . , al),

where γ(a1, . . . , ak) = (ak+1, . . . , al).

These two conditions motivate, why qe with answers is also called extended qe: The output of
a quantifier-free formula, as provided by classical qe, is extended to provide in addition sample
solutions.

4 Situation for the CAD Method

4.1 QE by Full CAD

The qe by cad algorithm can be described as consisting of three phases. The following sketch is
only intended to introduce notation. For a more detailed description see e.g. [3, 2]:

1. Projection. One starts out with the set Fr = F of polynomials in r variables, which is extracted
from the input formula. In r−1 projection steps there are r−1 further finite sets Fr−1, . . . , F1

of polynomials with one fewer variable in each step generated.
2. Extension. Based on the trivial decomposition D0 of 0-space one successively constructs de-

compositions D1, . . . , Dr of higher-dimensional spaces. For obtaining Di+1 there are sample
points of Di plugged into the polynomials of Fi+1. This yields univariate polynomials with
real algebraic numbers as coefficients. Essentially, the roots of these polynomials and rational
points between these roots extend the sample point of the underlying cell to give new sample
points for cells in Di+1

3. Solution formula construction. Truth values are computed for the leaf cells of the tree, i.e.
the cells in Dr. Depending on the quantifiers, these values are propagated down to cells in
Dr, . . . , Dk. Based on signs of projection polynomials, a quantifier-free solution formula is
constructed to describe the subset of R

k which is comprised of true cells.

4.2 QE by Full CAD with Answers

We now want to investigate if we can achieve similar results for the cad method. Still the same
assumptions on the form of the input formula ϕ are made as at the beginning of Section 3.

Let us furthermore assume that a full cad tree for this problem has been constructed, and cells
of Dr, . . . , Dk bear a truth value. For each cell C ∈ Dk let δC denote a quantifier-free description
of this cell. Such a formula exists, as each cell represents a semi-algebraic set. Let G denote the
finite set, which is generated by collecting for each true cell C(l) in Dl a guarded point (δC , xk+1 =
pk+1, . . . , xl = pl), Here C ∈ Dk is the unique predecessor of C(l), and pk+1, . . . , pl are derived
in the following way: Let C,C(k+1), . . . , C(l) be the path from C to C(l) in the cad tree and
k + 1 ≤ j ≤ l. To define pj , we look how the last component sj of C(j)’s sample point (s1, . . . , sj)
was generated. There are four cases.

1. There is a projection polynomial f ∈ Fj such that sj is the n-th root of f(s1, . . . , sj−1) ∈ A[xj].
Then pj := Root(f, n).

2. There are projection polynomials f, f ′ ∈ Fj such that sj lies between the n-th root of the
polynomial f(s1, . . . , sj−1) and the m-th root of f(s1, . . . , sj−1) and there exists no other root
in between. Then pj := (Root(f, n) +Root(f,m))/2.

3. If sj is smaller than the smallest or greater than the biggest root, then pj := Root(f, 1)− 1 or
pj := Root(f,m) + 1 for an appropriate f ∈ Fj and integer m.

6 Andreas Seidl

4. Otherwise, if there was no root at all, pk can be simply defined as 0 or as the special symbol
arbitrary.

After this set of guarded points is defined, we want to allow two ways to manipulate this set to
make it more concise.

1. Combine. Two guarded points, which only differ in the first part, can be combined:

(ψ, b), (ψ′, b) �→ (ψ ∨ ψ′, b).

2. Simplify. The first part of a guarded point can be replaced by an equivalent one.

In contrast to the virtual substitution method, the degree of the polynomials can be arbitrary.
Thus we cannot rely on radicals to specify pj . Instead we have to introduce the symbol Root. The
delinability property of the projection set ensures Root to be well-defined.

Correctness of the Algorithm We need to check whether the conditions (C1) and (C2) are
satisfied. As for (C1) a valid solution formula can be constructed as disjunction over formulas
describing the true cells of Dk.

To see that (C2) holds, note that a full cad tree D for

Ql+1xl+1 · · ·Qrxrψ

is essentially the same as for ϕ. The only difference is that cells on the levels Dk, . . . , Dl−1 bear
no truth value. If one now computes for a guarded point and for (a1, . . . , ak) ∈ R

k the values
ak+1, . . . , al, then the point (a1, . . . , al) lies in a true cell of Dl. Hence (C2) holds.

Furthermore, if for a set of guarded points both (C1) and (C2) hold, then combining and
simplifying points as described above will preserve these properties.

4.3 Examples

Second Example Revisited We revisit the example ϕ :≡ ∃x(ax2 + bx+ 1 = 0) from Subsection
2.2 to demonstrate the algorithm. Figure 4.3 shows the full cad tree for this problem. Here k = 2,
l = 3, and r = 3 with our notation. Let us denote the three cells of D1 by C1, C2, C3. We name

Fig. 2. Full cad tree for ϕ :≡ ∃x(ax2 + bx + 1 = 0). True cells are light gray, false cells are dark gray, and
solid black cells bear no truth value.

cells on a higher level similarly, but extend the index of the corresponding base cell. So, e.g.,
the three children of C1 in D2 will be called C11, C12, C13 and the five children of C11 will be

Extending Real Quantifier Elimination by Cylindrical Algebraic Decomposition to Get Answers 7

called C111, . . . , C115. There are 14 true cells in D3. The first true cell is C112. The last component
of its sample point was generated as a first root. If δ11 is a describing formula for C11 then
(δ11, (x = Root(ax2 + bx + 1, 1))) is the first guarded point. The last component of the sample
point of C114 was generated as a second root. Hence (δ11, (x = Root(ax2 + bx+ 1, 2))) is the next
guarded point to collect. Proceeding with the algorithm we get the following twelve additional
guarded points:

(δ12, (x = Root(ax2 + bx+ 1, 1)))
(δ12, (x = Root(ax2 + bx+ 1, 2)))
(δ13, (x = Root(ax2 + bx+ 1, 1)))
(δ13, (x = Root(ax2 + bx+ 1, 2)))
(δ21, (x = Root(ax2 + bx+ 1, 1)))
(δ23, (x = Root(ax2 + bx+ 1, 1)))
(δ31, (x = Root(ax2 + bx+ 1, 1)))
(δ31, (x = Root(ax2 + bx+ 1, 2)))
(δ32, (x = Root(ax2 + bx+ 1, 1)))
(δ36, (x = Root(ax2 + bx+ 1, 1)))
(δ37, (x = Root(ax2 + bx+ 1, 1)))
(δ37, (x = Root(ax2 + bx+ 1, 2)))

We can reduce the number of points by combining them as follows: As δ21 ∨ δ23 is equivalent to
a = 0 ∧ b �= 0, we combine point 7 and 8 to

(a = 0 ∧ b �= 0, (x = Root(ax2 + bx+ 1, 1))).

The latter could be further simplified by making use of the knowledge a = 0. This reduces the
quadratic polynomial to a linear one.

Furthermore, as δ11 ∨ δ12 ∨ δ13 ∨ δ31 ∨ δ32 ∨ δ36 ∨ δ37 is equivalent to 4a − b2 ≤ 0 ∧ a �= 0, we
can combine the points 1, 3, 5, 9, 11, 12, 13 to

(4a− b2 ≤ 0 ∧ a �= 0, (x = Root(ax2 + bx+ 1, 1))).

Finally, as δ11 ∨ δ12 ∨ δ13 ∨ δ31 ∨ δ37 is equivalent to 4a− b2 < 0∧ a �= 0, we can combine the points
2, 4, 6, 10, 14 to

(4a− b2 < 0 ∧ a �= 0, (x = Root(ax2 + bx+ 1, 2))).

We finish this example by concluding that we could reduce the 14 guarded points to three, which
quite match the three cases found by the vs method. (Actually, the reason why we did not get
exactly the same result are the cells C322 and C362, where the last component of the sample point
is a single root with multiplicity two.)

Third Example Revisited In Subsection 2.3 we found an exact implicit description for a given
parametric curve, and ended up with the formula

ρ = 0 and x ≤ −63.

This hints that there might be extraneous points in the halfspace x > −63. So we apply extended
qe by cad to

∃x∃y(ρ = 0 ∧ x > 63)

and derive true and the answer

x =
−30758091

559682
, y =

42875
529

.

8 Andreas Seidl

We can now convince ourselves that this is the only extraneous point by applying qe to

∃x∃y(x > −63 ∧ ρ = 0 ∧ ¬(559682x = −30758091 ∧ 529y = 42875))

and deriving false.

5 Parametric Counter-Examples

In this section we assume the input formula

ϕ(x1, . . . , xk) ≡ ∀xk+1 · · · ∀xlQl+1xl+1 · · ·Qrxrψ

to have a leading block of universal quantifiers. This is dual to the assumption in Section 3. By
negating this input formula, we get

ϕ(x1, . . . , xk) ≡ ∃xk+1 · · · ∃xlQl+1xl+1 · · ·Qrxrψ.

For formulas, overlining is just an alternative notation for negation. For quantifiers, an overlined
quantifier denotes the dual one. Let

{(ψ′
i, (xk+1 = bi,k+1, . . . , xl = bi,l))|i ∈ I}

be the output of the extended algorithm on input of ϕ. Then, dually to (C1) and (C2) the following
two conditions hold.

(C1) Quantifier-free formula. We can easily construct from the set of guarded points a quantifier-
free formula, which is equivalent to the input formula:

R |= ϕ↔
∧
i∈I

¬ψ′
i.

(C2) Counter-example. For every guarded point (ψ, (xk+1 = bk+1, . . . , xl = bl)) in the output set
and every (a1, . . . , ak) ∈ R

k with R |= ψ(a1, . . . , ak), we have

R �|= Ql+1xl+1 · · ·Qrxrψ(a1, . . . , al),

where γ(a1, . . . , ak) = (ak+1, . . . , al).

In other words: Instead as a union of true cells we get the set described by a solution for-
mula as intersection of complements of false cells. If given parameter values (a1, . . . , ak) lie in
a false cell, then the appropriate guarded point delivers counter-examples (ak+1, . . . , al) such that
Ql+1xl+1 · · ·Qrxrψ(a1, . . . , al) does not hold.

6 Implementation

The algorithms described in this paper are currently being implemented in the computer logic
system redlog as part of the computer algebra system reduce. The new version 3.8 was recently
announced. For details see the webpage http://reduce-algebra.com/.

7 Acknowledgment

The author has been supported by the DFG Project WE 566/5.

Conclusions

We have motivated that it is highly desirable to produce answers in addition to a solution formula
as output of quantifier elimination for a formula with leading existential block of quantifiers. We
have devised an algorithm to extend the cylindrical algebraic decomposition method to produce
such answers. For non-decision problems, these sample solutions are in general parametric. For the
dual case, i.e. for formulas with leading universal block of quantifiers, we get parametric counter-
examples. The main benefit over a virtual substitution based approach is that there are no degree
restrictions on the input.

Extending Real Quantifier Elimination by Cylindrical Algebraic Decomposition to Get Answers 9

References

1. Chaouki T. Abdallah, Peter Dorato, Wei Yang, Richard Liska, and Stanly Steinberg. Applications of
quantifier elimination theory to control system design. In Proceedings of the 4th IEEE Mediterranean
Symposium on Control and Automation, pages 340–345. IEEE, 1996.

2. Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical algebraic decomposition I: The
basic algorithm. SIAM Journal on Computing, 13(4):865–877, November 1984.

3. George E. Collins. Quantifier elimination for the elementary theory of real closed fields by cylindrical
algebraic decomposition. In H. Brakhage, editor, Automata Theory and Formal Languages. 2nd GI
Conference, volume 33 of Lecture Notes in Computer Science, pages 134–183. Springer-Verlag, Berlin,
Heidelberg, New York, 1975.

4. Andreas Dolzmann. Reelle Quantorenelimination durch parametrisches Zählen von Nullstellen.
Diploma thesis, Universität Passau, D-94030 Passau, Germany, November 1994.

5. Andreas Dolzmann, Andreas Seidl, and Thomas Sturm. REDLOG User Manual, April 2004. Edition
3.0.

6. Andreas Dolzmann and Thomas Sturm. Guarded expressions in practice. In Wolfgang W. Küchlin,
editor, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (IS-
SAC 97), pages 376–383, Maui, HI, July 1997. ACM, ACM Press, New York, 1997.

7. Andreas Dolzmann and Volker Weispfenning. Multiple object semilinear motion planning. To appear.
8. Lorenz A. Gilch. Effiziente Hermitesche Quantorenelimination. Diploma thesis, Universität Passau,

D-94030 Passau, Germany, September 2003.
9. Hoon Hong, Richard Liska, and Stanly Steinberg. Testing stability by quantifier elimination. Journal

of Symbolic Computation, 24(2):161–187, August 1997. Special issue on applications of quantifier
elimination.

10. Nikolaos I. Ioakimidis. REDLOG-aided derivation of feasibility conditions in applied mechanics and en-
gineering problems under simple inequality constraints. Journal of Mechanical Engineering (Strojńıcky
Časopis), 50(1):58–69, 1999.

11. Mats Jirstrand. Nonlinear control system design by quantifier elimination. Journal of Symbolic Com-
putation, 24(2):137–152, August 1997. Special issue on applications of quantifier elimination.

12. Andreas Seidl. Cylindrical algebraic decomposition for real quantifier elimination within redlog. Talk
at the 8th International Conference on Applications of Computer Algebra, June 2002.

13. Werner M. Seiler and Andreas Weber. Deciding ellipticity by quantifier elimination. In V. G. Ganzha,
E. W. Mayr, and E. V. Vorozhtsov, editors, Computer Algebra in Scientific Computing. Proceedings
of the CASC 2003, pages 345–356. Institut für Informatik, Technische Universität München, Passau,
2003.

14. Thomas Sturm. Real Quantifier Elimination in Geometry. Doctoral dissertation, Department of Math-
ematics and Computer Science. University of Passau, Germany, D-94030 Passau, Germany, December
1999.

15. Thomas Sturm. Reasoning over networks by symbolic methods. Applicable Algebra in Engineering,
Communication and Computing, 10(1):79–96, September 1999.

16. Thomas Sturm. An algebraic approach to offsetting and blending of solids. In V. G. Ganzha, E. W.
Mayr, and E. V. Vorozhtsov, editors, Computer Algebra in Scientific Computing. Proceedings of the
CASC 2000, pages 367–382. Springer, Berlin, 2000.

17. Volker Weispfenning. The complexity of linear problems in fields. Journal of Symbolic Computation,
5(1&2):3–27, February–April 1988.

18. Volker Weispfenning. Parametric linear and quadratic optimization by elimination. Technical Report
MIP-9404, FMI, Universität Passau, D-94030 Passau, Germany, April 1994.

19. Volker Weispfenning. Semilinear motion planning among moving objects in REDLOG. In V. G. Ganzha
and E. W. Mayr, editors, Computer Algebra in Scientific Computing. Proceedings of the CASC 2001,
pages 541–553. Springer, Berlin, 2001.

20. Volker Weispfenning. Semilinear motion planning in REDLOG. Applicable Algebra in Engineering,
Communication and Computing, 12:455–475, June 2001.

