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ABSTRACT

We introduce an efficient algorithm for determining a suit-
able projection order for performing cylindrical algebraic
decomposition. Our algorithm is motivated by a statisti-
cal analysis of comprehensive test set computations. This
analysis introduces several measures on both the projection
sets and the entire computation, which turn out to be highly
correlated. The statistical data also shows that the orders
generated by our algorithm are significantly close to opti-
mal.

Categories and Subject Descriptors

G.4. [Mathematics of Computing]: Mathematical Soft-
ware— Algorithm design and analysis

General Terms

Algorithms,Performance,Experimentation, Theory

Keywords
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1. INTRODUCTION

Cylindrical algebraic decomposition (CAD) [1] is an impor-
tant and powerful tool in real algebraic geometry. One ma-
jor application is real quantifier elimination [4]; one promi-
nent other application is adjacency algorithms [2, 15].

The pure decomposition algorithm constructs for a fi-
nite set A C Rlz1,...,z,] of multivariate polynomials in r
variables a decomposition of real r-space into finitely many
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cells such that over each cell all polynomials in A are sign-
invariant. With each cell there is simultaneously a sample
point inside this cell constructed in such a form that the sign
of the polynomials in A can be effectively determined.

The CAD construction is commonly described as consisting
of three phases:

1. The projection phase starts out with the original set
A, = A of polynomials in r variables. In r — 1 pro-
jection steps there are r — 1 further finite sets A,_1,
..., Ay of polynomials with one fewer variable in each
step generated.

2. In the base phase, the finitely many zeros of the set A;
of univariate polynomials obtained in the last projec-
tion step are computed in some exact symbolic repre-
sentation. Both the zeros and the open intervals be-
tween these zeros are cells that yield a decomposition
D1 of 1-space. The zeros are at the same time sam-
ple points for themselves. For the intervals there are
sample points explicitly computed.

3. The extension phase starts out with the decomposition
D1 of 1-space and successively constructs decomposi-
tions Da, ..., D, of higher-dimensional spaces. For ob-
taining D;4; there are the sample points of D; plugged
into the polynomials of A;4+1, which yields univariate
polynomials. Then one proceeds like in the base phase.

One crucial result, which makes this technique work, is
that the projection generates polynomials in such a way that
the polynomials in As are sign-invariant over the cells ob-
tained from A; in the base phase, and that this remains true
for higher dimensions when plugging in sample points from
the cells.

Consider now a prenex first-order formula ¢ containing
only polynomials from A as terms, and let zgy1, ..., zr
denote the quantified variables:

Q: € {H,V}.

It is easy to see that v has an invariant truth value over each
cell in D,,, and using the sample points, this truth value can
be effectively determined. Moreover, it is possible to pro-
duce quantifier-free descriptions for the cells in Dy. A CAD
can be exploited for eliminating the quantifiers from ¢. For
this one uses a rather straightforward recursive algorithm,
which checks for j € {k+1,...,r} for each cell C;_1 in D;j_1

© = Qr+1Tk+1 - - - Qrxrth,



Figure 1: CAD wrt. the variable order y — x.

according to the quantifier Q); either at least one or all cells
in D; that lie in the cylinder over C;_;.

During the past 30 years there have been considerable
research and publications on optimizing cAD. For the ap-
plication to real quantifier elimination, the introduction of
partial CAD (PCAD) [5] has been one major progress, which
affects the extension phase.

The vast majority of improvements, however, extremely
focused on improving the projection phase [12, 14, 8, 11,
3, 16]. Most surprisingly, all these contributions concen-
trating on improved projection operators never examined
the relevance of the order in which the variables are pro-
jected. If one is only interested in pure CAD, then this order
can be chosen completely arbitrarily. For quantifier elimi-
nation there are restrictions imposed by projecting unquan-
tified variables last and not interchanging 3 with V. There
is, however, still a considerable degree of freedom.

We are going to demonstrate by means of a small example
that the projection order is highly relevant for the practical
complexity of the overall procedure: We consider two circles
of radius 2,

a = (@+3)°+@y+1)7 -4,
o = (2-3)%+(y—1)7° -4

one located at (—3,—1) and the other one located at (3,1):

Figure 1 shows a CAD for these circles choosing the pro-
jection order y — x. This CAD contains 1 +34+5+3+ 1+
34+5+3+1=25 cells.

Figure 2 shows, by the way of contrast, a corresponding
CAD using the projection order z — y. Note that the y-axis
is drawn horizontally here. We obtain considerably more
cells: 1 +34+5+74+94+74+54+3+1=41.

It is obvious that the computation of this second CAD re-
quires more computational resources while delivering a re-
sult of equal quality for most purposes.

This paper provides results for determining good variable
orders from the input beforehand, i.e., without actually con-
structing any CAD, in order to then construct the desired
CAD wrt. such an order.

The plan of the paper is as follows: In Section 2, we intro-
duce time and space measures for characterizing the com-
plexity of a particular CAD computation. These measures
apply partly to the projection phase and partly to the over-
all computation. We discuss a comprehensive example set
of cAD’s wrt. all relevant orders and apply all our measures
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Figure 2: CAD wrt. the variable order =z — y.

to all results. We then show on a precise formal basis that
for this set of examples all our measures are statistically
strongly correlated. In particular there are measures on the
projection that are suitable for predicting the complexity of
the overall computation.

In Section 3, we introduce a heuristic algorithm for effi-
ciently constructing one good projection order wrt. to the
relevant measures on the projection phase. This is done
without trying all relevant projection orders. In fact, it can-
not be avoided constructing several alternatives for the pro-
jection of each variable, but the number of such construction
steps in our algorithm is only quadratic in contrast to ex-
ponential in the number of variables. We reuse our example
database from Section 2 to show two facts: First, our heuris-
tic algorithm yields projection orders that are statistically
significantly close to optimal. Second, the overhead originat-
ing from constructing the good projection order is negligible
while the gain is immense.

In Section 4 we conclude our contribution by summarizing
and evaluating our results.

Section 5 finally contains an appendix listing the variable
orders used for the computation of the example set in Sec-
tion 2 such that these computations can be reproduced.

2. MEASURESON CAD COMPUTATIONS

In this section we consider the following situation: There
is a set A of polynomials in r variables given, which pos-
sibly origin from a prenex formula ¢. For a variable order
X = (xr,...,x1), which we also write z, — --- — x1, the
projection results in projection sets A, ..., A1 of projection
factors; for convenience we set here and in the sequel A, :=
A. Based on these sets, the cAD tree D = (D1,...,D,)
is constructed. The levels D1, ..., D, of D are CAD’s for
R', ..., R", respectively. This situation is completely spec-
ified by (A, X) or (¢, X), respectively. We have developed
our methods on the basis of the classical Collins—Hong pro-
jection. They are, however, also applicable to the other
projection operators discussed in the literature.

Our goal is to find for given A or ¢ a favorable projection



order X at the earliest possible stage. For this we want to be
able to draw conclusions on the size of the CAD from prop-
erties of the intermediate projection sets A,, A._1, ..., A1.

Therefore, we are going to systematically investigate nu-
merous complete CAD’s wrt. all relevant projection orders,
consider certain measures on the projection sets as well as
on the CAD’s, and examine statistical correlations between
these measures.

21 Measures

There are six measures that we take into account:

1. The number of projection factors in all the projection
sets Ay, ..., A1:
T
card(A, X) = > | Al.

i=1

2. The sum of total degrees of all monomials of all poly-

nomials in all the projection sets A, ..., Aj:
s
sotd(4, X) =>" > o(f),
i=1 fEA;

where, using the convention e = (eq,...,e,),
T

(Sowt ) =X T
ecE ecE i=1

3. The number of cells in the resulting full CAD:

ncad(4, X) = |D.,|.

4. The overall computation time of the full CAD compu-
tation in seconds:

tcad(A4, X).

5. The number of leaves in the partial CAD tree that is
generated for quantifier elimination:

npcad(p, X) = |{ceDkU~~~UDT | cisaleaf}‘.

6. The overall computation time of the quantifier elimi-
nation by partial CAD in seconds:

tae(p, X).

The time measures tcad and tqe depend on the implemen-
tation and the machine. We have used the CAD implemen-
tation of the second author in the REDLOG package [7] of the
widespread computer algebra system REDUCE. We have car-
ried out all our computations on a 2.0 GHz Intel Pentium IV
using 128 MB of RAM.

The first four measures card, sotd, ncad, and tcad are
defined for sets A of polynomials. They can be as well ap-
plied to formulas ¢ by considering the set of polynomials
occurring in these formulas. The last two measures npcad
and tqe, in contrast, do not make sense outside a quantifier
elimination context.

It might appear more natural to consider in the definition
of our sotd the total degrees of the corresponding polynomi-
als instead of sums of total degrees of monomials. Experi-
ments have shown that these measures are highly correlated.
Our choice has the advantage to favor sparse polynomials.

For the definition of npcad we have to recall the basic idea
of the partial CAD procedure for quantifier elimination [5]:
When using full cAD, there is the CAD tree D = (D1, ..., D,)
computed, and then the matrix formula is evaluated at the
sample points of the cells in D,. The truth values thus
obtained are propagated down to the corresponding root
cell in Dy, according to the types of quantifiers. Hence full
CAD computation and its use for quantifier elimination are
two isolated subsequent steps. For partial CAD, in contrast,
one tries to determine truth values for the matrix formu-
las during extension already for cells in D1, ..., D,_1, i.e.,
without fixing all variables to real numbers. For instance,
x1 —42 > 0 A x% — 4711x3 = x4 is false for z1 = \/5, no
matter what =2, ..., x, are. Whenever one succeeds this
way for a cell ¢ € D;, where ¢ € {1,...,r}, this cell ¢ need
not be further extended. In other words, the partial cAD
tree is pruned at this point, and ¢ becomes a leaf.

It is now clear, that it is not reasonable to consider the
time for the partial CAD construction as a measure: This
construction is not isolated from the quantifier elimination
but contains a considerable part of the quantifier elimina-
tion work, viz. hard computations with algebraic numbers
for trial evaluation of the matrix formula. The other part of
the quantifier elimination work, viz. solution formula con-
struction, is, in contrast, still an isolated subsequent step.
From that point of view, we consider tqe an appropriate
counterpart for tcad.

The first two measures card and sotd can be applied after
or even during projection. They are candidates for suitable
criteria for determining projection orders. The latter four
measures ncad, tcad, npcad, and tqe, in contrast, can be
applied only after a complete CAD computation or quantifier
elimination, respectively. They are going to be used for
evaluating the significance of our candidate criteria.

2.2 Computation of the Test Set

We are going to discuss a test set consisting of six CAD
examples, mostly from the literature. Each example has
been computed wrt. a significant number of projection or-
ders. In fact, we have computed a much more comprehensive
example set comprising 48 examples, and selected these six
examples as a representative subset for this paper.

All our examples are in fact quantifier elimination exam-
ples, which allows us to apply all our measures. Note that
also from the point of view of pure CAD, it is not at all
a restriction to consider only such examples; they can be
considered deliverers of interesting sets of polynomials.

2.2.1 Admissible Projection Orders

On the other hand, we consider the quantifier block struc-
ture of the examples in order to restrict the set of possible
orders to a reasonable subset: Strictly speaking, quantifier
elimination by CAD for a prenex formula

© = Qk-‘rlxk-‘rl e Q’rx'rw

requires a projection order with two properties: First, all
quantified variables x,, ..., xx+1 are projected before all
unquantified variables xk, ..., x1.

Second, the quantified variables have to be projected es-
sentially in the order z, — --- — xg41. This requirement
for a fixed projection order is weakened by the fact that in ¢
like neighbored quantifiers can be equivalently interchanged.

For instance, Jz3yVzy is equivalent to Jy3xVzy but not



generally equivalent to JxVz3yi. Consequently z — y — =
and z — x — y are both possible projection orders in this
example, while y — z — x is not. This observation suggests
to rewrite 3{x, y}v{z}1 thus making visible the quantifier
blocks.

So returning to the general discussion, we can rewrite our
prenex formula ¢ as

0 =@Q1B1...QnBn,

where Q; # Qi1 fori € {1,...,n—1} and Bs, ..., B, are
finite sets of variables. This is the unique block representa-
tion of a prenex formula. For convenience, let By denote the
set of unquantified variables.

From that point of view, admissible projection orders for
quantifier elimination are characterized by projecting

B, — -+ — B1 — By,

while within each block B; the order can be freely chosen.
Obviously, the number of admissible projection orders is
given by

I]1B:
=0

2.2.2 TheQuartic Problem

The quartic problem has been suggested by Lazard [10].
It asks for necessary and sufficient conditions on the coeffi-
cients of a quartic polynomial to be positive semidefinite:

quartic = Vz(pz® + gz +r + z' > 0).

There are 1! - 3! = 6 admissible orders. The following table
presents the computation results:

card sotd ncad tcad npcad tqe
1 7 54 445  4.71 251 7.04
2 7 54 445 83.39 251 138.18
3 7 50 417 0.5 235 0.89
4 7 50 417  1.64 239 2.55
5 9 66 1 >600 1 >600
6 9 66 1 >600 L >600

We see that card cannot predict differences in ncad, where
sotd can. Note that ncad and tcad are surprisingly unrelated
here. On the other hand, there is one order, viz. no. 3, that
is optimal wrt. all criteria. We have automatically aborted
all our computations after 10 minutes. Measures that are
unknown due to such unfinished computations are marked
with L.

2.2.3 AReal Implicitization Problem

This example is an exercise on complex implicitization in
a textbook [6]. Our formulation asks for a corresponding
real implicitization:

c1s7 = JuTv(z = uwv Ay = wv’ A z = u?).

The number of admissible orders is 2! - 3! = 12.

'For all our examples discussed thoughout this section, the
actual variable orders used in each table row are collected
in an appendix in Section 5.

card sotd ncad tcad npcad tqe

1 9 25 889 0.09 266 0.16
2 9 25 889 0.09 266 0.15
3 9 25 889 0.15 268  0.20
4 9 25 889 0.14 266 0.22
5 9 25 889 0.14 268 0.19
6 9 25 889 0.15 266 0.19
7 11 36 1571  0.19 508 0.28
8 11 36 1571 0.18 508  0.28
9 11 36 1571  0.17 582  0.29
10 11 36 1571 0.16 580 0.29
11 11 36 1571 0.17 582  0.29
12 11 36 1571 0.17 580 0.28

Compared to the previous example there is much less varia-
tion here. Note that a choice of projection order according
to card or sotd yields significantly good ncad, tcad, npcad,
and tqe.

2.2.4 Range of Lower Bounds

The following formula asks for the possible range of strict
lower bounds on the values of a parabola that has no real
Z€ros.

as6 = VaVavbVedz'((a > 0A az’? + b2’ +c# 0) —
y < ax2+b:c+c).

There are 1! - 4! - 1! = 24 admissible orders:

card sotd mncad tcad npcad tqe
11 42 4199 0.39 283 0.07
11 42 4199 048 307 0.09
12 44 5231 0.55 487 0.15
12 44 5231  0.55 487 0.14
13 53 6389 1.37 341  0.13
12 49 6389 0.38 357  0.09
11 50 4007 0.44 241  0.06
11 50 4007 0.55 255  0.08
12 50 5027 0.62 395 0.12
10 12 50 5027 0.62 395 0.11
11 12 50 5027 0.58 305 0.10
12 12 50 5027 0.59 321 0.10
13 12 43 5007 0.46 523 0.18
14 12 43 5007 0.40 523 0.17
15 11 39 3975 0.38 423 0.16
16 11 39 3975 0.40 423  0.15
17 11 39 3975 0.28 415  0.16
18 11 39 3975 0.29 415 0.14
19 11 36 3709 0.52 348 0.16
20 11 36 3709 0.21 358 0.11
21 9 28 2365 0.27 272 0.11
9 28 2365 0.27 288 0.11

23 9 28 2365 0.18 290 0.08
9 28 2365 0.14 290 0.08
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This is another example with little variation. Here card and
sotd do not discover optimal orders wrt. npcad or tqe. The
orders that they point at are, however, absolutely accept-
able.

2.2.5 Consistency in Strict Inequalities

This problem decides whether the intersection of the open
ball with radius 1 centered at the origin and the open cylin-
der with radius 1 and axis the line x = 0, y +2 = 2 is
nonempty. It has been introduced by McCallum and used



by Collins and Hong for demonstrating PCAD [13, 5]:
con = 323m3y(x2 +yP+ 22 <1Az?+ (y+2z— 2)2 < 1).

There are 3! = 6 admissible orders:

card sotd ncad tcad npcad tqe
1 12 46 251 0.02 51 0.01
2 8 43 365 2.24 43 0.04
3 11 33 193 0.02 29 0.01
4 11 38 193 0.02 37 <0.01
5 8 43 365 2.90 47 0.07
6 12 46 251 0.02 51 0.01

Comparing the lines 2 and 5 with 3 and 4, we observe that
card and sotd contradict each other. Following sotd in these
cases yields the best values for ncad, tcad, npcad, and tqe.

2.2.6 Parametrized Collision Problem

The following formula asks if two moving objects, a circle
and a square, are going to collide at some time ¢ in the fu-
ture. The circle is moving with constant velocity (1,0), while
the velocity of the square is parameterized with (vs,vy).
This example has been used by Collins and Hong for several
fixed choices of (va,vy) [5].

pcol = FtAxIy(t >0A-1<z— vt <1A
—9<y—vt < -TA(z—t)°+y* <1).

The number of admissible orders is 3! - 2! = 12:

card sotd ncad tcad npcad tqe

1 62 250 144971  47.86 6969  3.78
2 62 250 144971 121.13 6969  4.91
3 1 1 1 >600 1 >600
4 4678 227337 1 >600 1L >600
5 62 248 149925  58.95 13310  4.53
6 62 248 149925 151.50 13310  7.51
7 57 323 L >600 1 >600
8 57 323 1 >600 1 >600
9 L € 1 >600 1L >600
10 1 1 1 >600 1 >600
11 1 1 1 >600 L >600
12 €L L 1 >600 1L >600

In this example we observe an immense variety in all mea-
sures. In particular, the orders in the lines 3, 9-12 do not
even allows to finish projection within the time limit. The
probability of failing to finish full as well as partial CAD
computation for a random order is 2/3. Minimal card mis-
leadingly points at such failing orders. Minimal sotd does
not point at the optimal order but still at acceptable ones.

2.2.7 The x-AxisEllipse Problem

The X-Axis Ellipse Problem has been firstly stated by
Kahan [9]. It has been formulated as a quantifier elimina-
tion problem by Lazard [10]. The problem is to write down
conditions such that the ellipse

(z—c?  (y—a?
a? + 2 1

is inside the circle 22 + y?> = 1. We treat the special case
d=0:

ell = VmVy(bQ(x —o)?+dy =’V — P+ < 1).

There are 2! - 3! = 12 admissible orders:

card sotd ncad tcad npcad tqe
32 107 114541 46.64 37883  29.68
28 103 51477 4554 11635 28.70
26 89 64625 17.10 21059  15.59
27 91 96833 29.71 20431 17.70
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36 119 1 >600 74587 260.70

43 129 1L >600 1L >600

122 522 1 >600 1L >600

109 537 1 >600 1L >600

7T 345 1 >600 1 >600

10 74 331 1 >600 1L >600
11 136 761 1L >600 1L >600
12 143 751 1 >600 1L >600

Similar to the previous example, there is probability of only
1/3 to finish full cAD and only a slightly higher probability
to finish partial cAD for a random order. Both minimal card
and sotd point at an optimal order wrt. tcad, npcad, and
tqge and this order is almost optimal wrt. ncad.

2.3 Statistical Correlations

In the informal remarks after presenting for each of our ex-
amples the resulting table, we have collected some positive
and negative observations concerning the possible correla-
tions between our measures.

We are now going to systematically examine the correla-
tions on a precise formal basis. To motivate this, consider
the z-axis ellipse problem from Section 2.2.7. For the 12 ad-
missible projection orders the card values (lower line) and
the corresponding sotd values (upper line) differ pretty much
as can be seen from the following interpolated plot:

900
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700
600
500
400
300
200

100
0 P A4 | |

Nevertheless, it is our impression that there is a correla-
tion between these measures. To substantiate this, we in-
troduce a formal notion of correspondence: Consider lists
p=(p1,...,pm)and ¢ = (q1,...,q) in RU{L} like the card
column and the sotd column for the ellipse example. The
value L is used to encode that the corresponding value is
unknown. Define

I={{ij}|1<i<j<landpi,pj ¢ ¢ ER};

this is the set of all unordered pairs of different indices (or-
ders) for which all values are known. On this basis, we define

C = {{i,j} € I|sign(p: — p;) = sign(a: — q;) },

the subset of all pairs of indices where the corresponding
values for p are ordered in exactly the same way as the ones
for g. Finally, we define

C'={{i,j} € I||sign(p: —p;)| # | sign(a: — ¢;)| },



where the corresponding orders between the values are at
least not completely opposite. In these definitions, sign(z)
is 1, 0, or —1 if x is positive, zero, or negative, respectively,
and | - | denotes the usual absolute value.

If we observe C' = I, then this would suggest very good
correspondence. If {i,j} ¢ C for some {i,j} € I, then
we would consider it good correspondence to at least have
{i,j} € C’. This gives rise to the following definition of the
degree of correspondence between p and q. It is defined for
|I] > 0:

Cl+0.5|C
doc(p.q) = (A

€ [0,1].
Note that doc is commutative.

It is not hard to see that for fixed list length [, the average
over the degrees of correspondences for all possible choices
of pairs of lists is 0.5. A value greater than 0.5 thus indicates
an above-average correspondence. For our motivating ellipse
example above, we obtain, e.g., doc(card, sotd) = 0.97.

The following table collects for all our examples the doc
values for the relevant combinations of card, sotd, ncad,
tcad, npcad, and tqge. For convenience, the doc’s are multi-
plied by 100 thus rescaling them to percentages:

quartic c¢ls7 as6 con pcol ell O
card—ncad 67 100 89 46 67 67 T2
sotd—ncad 100 100 88 74 33 67 77
card-tcad 50 81 78 30 50 100 64
sotd-tcad 83 81 85 56 33 100 73
card—npcad 58 84 67 67 67 70 68
sotd—npcad 91 84 54 93 33 70 70
card-tqe 50 82 62 33 50 100 62
sotd-tqe 83 82 47 60 33 100 67

The last column gives the averages over the corresponding
lines. These averages indicate that sotd has a significantly
higher doc with all measures on the complete computation
than card.

We thus consider sotd in contrast to card to be a suit-
able indicator after projection for the time and space to be
expected for the overall computation.

3. CONSTRUCTING GOOD ORDERS

We recall from the previous section that sotd(A, X) for a
set A of polynomials and a projection order X is the sum of
the total degrees of all monomials in all polynomials in all
projection sets A,, ..., A1. For a prenex first-order formula
¢ we may also speak of sotd(p, X) referring to the set of
polynomials occurring in ¢.

The results of the previous section provide a good indica-
tion that sotd is a suitable measure that is correlated with
a high degree of correspondence to all measures that one
possibly wishes to optimize in order to save computational
resources:

1. small size of the full CAD (ncad),

2. fast computation time for the full CAD (tcad),

3. small size of the partial CAD (npcad),

4. fast computation time for quantifier elimination (tqe).

On the basis of this result we can conclude from the knowl-
edge of all projection sets for all admissible orders on the

interesting time and space measures listed above without
actually performing any base phase or extension phase.

The remaining problem is the following: In order to get
a basis for the decision, there are still projection phases
wrt. all admissible orders to be performed. The worst-case
number of admissible orders is the factorial of the number
of variables and hence exponential in the word length of the
input.

In this section we are going to suggest a heuristic algo-
rithm for finding a good projection order wrt. sotd. This
algorithm will require quadratically many projection steps
in the number of variables and thus in the word length.

We are going to evaluate the quality of the orders de-
termined by our algorithm on the basis of our example set
introduced in the previous section. It is going to turn out
that the practical computation times are absolutely negligi-
ble, while the gain obtained from using the computed orders
is immense.

3.1 Greedy Projection

We suggest a greedy algorithm for finding a good admis-
sible projection order wrt. sotd. By greedy, we refer to
roughly the following idea: We perform the first projection
step wrt. to all possible variables. Then we determine the
sum of total degrees for each single obtained set. We greed-
ily take the best one, throw away all others, and repeat like
that until there are no variables left to order.

ALGORITHM 1  (GREEDY PROJECTION). Input: a finite
set A C Rlz1,...,zr], B C {z1,...,2+}. Output: A pro-
jection order w on B and the corresponding intermediate
projection set A’.

1 begin

2 w:=()

3 while B # () do

4 A/ = J_

5 for each z € B do

6 A" :=project({ f € Az in f },x)

7 s = ZfeA” o(f)

8 if A= 1 or s < s’ then

9 A =A"U{feA|znotin [}

10 s =s"

u =z

12 ﬁ

13 od

n w:i=wo (z')

15 A=A

16 B:= B\ {z'}

17 od

18 end

In Line 6, project(M, v) denotes one projection step on the
set M wrt. the variable v. In Line 7, recall the definition of
o from Section 2.1, and note that sums over the empty set
are zero.

For sets A of polynomials we can straightforwardly apply
our algorithm to the given set A and the set of all variables
occurring in the polynomials in A.

For formulas ¢, we have to recall our discussion of admis-
sible orders in Section 2.2.1: For a formula

©=Q1B1...QuBnv

in prenex block representation, the admissible projection or-



ders are characterized by projecting the blocks in the order
B, — -+ — B1 — Bo,

where By denotes the set of all unquantified variables. For
each of these blocks, the order can be freely chosen. The
input A of our algorithm for the first block B, is the original
set of polynomials in ¢. In the sequel, for each block B; with
i € {0,...,n — 1} the input A is the A returned from the
preceding call for B;4.

Note that the algorithm, for several reasons, does not nec-
essarily find a projection order yielding really minimal sotd:

1. We apply a local criterion on projection levels, while
sotd is a global criterion on entire projections. In other
words, the projection order with smallest sotd need not
necessarily have small sums of total degrees in the set
obtained after the first projection step.

2. When judging in Line 7 the quality of a trial projection
wrt. some variable z, the set A” is not perfectly the
set that has to be considered: Some of the polynomials
sorted out in Line 6 would belong into A” while others
would not. This depends on the next variable to be
projected, which we do not yet know.

Nevertheless, we shall see that our greedy algorithm applied
to the previous set of examples provides orders of very high
quality in the following sense: First, they are as a rule close
to optimal. We are going to substantiate this in the following
section by means of a statistical analysis. Second, and even
more important, the computed orders never exceed the time
limit in any of our examples, even when there is a high
probability of failing.

3.2 CAD Performancewith Greedy Projection

The following tables provide a statistical analysis of the
performance of the orders generated by our greedy algo-
rithm. It shows that the performance of these orders is
considerably above-average. The extra computing time is
negligible.

quartic cls7 as6
order no. by greedy 3 1 22
time for greedy 0.01 <0.01 0.01
ncad by greedy 417 889 2365
rank w/i ncad lof6 1ofl12 1of24
median of ncad 445.00 1230.00 4103.00
mean of ncad 1 1230.00 4273.00
tcad by greedy 0.54 0.09 0.27
rank w/i tcad lof6 1ofl12 4o0f24
median of tcad 44.05 0.16 0.42
mean of tcad >215.04 0.15 0.45
npcad by greedy 235 266 288
rank w/i npcad lof6 1ofl12 5o0of24
median of npcad 251.00  388.00 352.50
mean of npcad 1 411.67 364.25
tqe by greedy 0.89 0.16 0.11
rank w/i tqe lof6 2o0f12 10 of 24
median of tqe 72.61 0.25 0.11
mean of tqge >224.78 0.24 0.11

con pcol ell

order no. by greedy 3 5 3
time for greedy <0.01 0.13 0.01
ncad by greedy 193 149925 64625
rank w/i ncad lof6 30f12 20f12
median of ncad 251.00 1 L
mean of ncad 269.67 1 1
tcad by greedy 0.02 58.95 17.10
rank w/i tcad lof6 20f12 1of12
median of tcad 0.02 1 L
mean of tcad 0.87 >431.62 >411.59
npcad by greedy 29 13310 21059
rank w/i npcad lof6 3of12 3of12
median of npcad 45.00 1 L
mean of npcad 43.00 1 1
tqe by greedy 0.01 4.53 15.59
rank w/i tqe 20f6 20f12 1of12
median of tqe 0.01 1 L
mean of tqe 0.02 >401.72 >379.36

4. CONCLUSIONS

We have obtained strong statistical evidence that the pro-
jection order is of crucial importance for the success of CAD
computations. For determining the quality of a given projec-
tion order, we have shown that there is one single measure,
viz. sotd, on the projection sets that is correlated to all in-
teresting time and space measures on the computation of a
full cAD as well as on quantifier elimination by partial CAD.
We have introduced a greedy algorithm for efficiently con-
structing a good projection order wrt. sotd. Our work closes
a considerable gap within the CAD framework.

5. APPENDIX: CATALOGUE OF ORDERS

We finally list for our example set computed in Section 2.2
the projection orders used there. The numbering here cor-
responds to the that of the table rows in Section 2.2:
quartic: l.xa = r—q—p, 2. c—=1r —p—gq,
3.xr—>q—-r—-pdr—oqop—onr,br—p—r—q,
6.2 —p—q—r.
cls7: l.v—u—2z—y—z,2.v—>Uu—2—>T—Y,
Bvou—y—z—ox,dv—ou—y—x— 2
50v—-ou—xr—2—>Y, b6.v—ou—r—>Y— 2
TuUu—=v—=2—=Yy—=z,8u—v—2—2—1Y,
Su—-v—y—z—z, 100y —v—y—x— 2
1Mlu—v—-2x—2—y,12.u—v—oa—>Yy—=2
as6: 1.2’ wc—b—a—x—y,

2.2 sc—=b—-2x—a—y, 3.2 -c—a—b—x—y,

6.2 wc—r—a—b—y 72 —-b—c—a—x—7y,

’

4.2/ wc—a—zx—b—y b —c—x—b—a—y,
/
/ /

8.2 »b—-c—zrz—a—y, 9 x
10.2' =b—a—x—c—uy,
11.2 =b—2—c—a—y,
12.2' = b—o2x—a—c—y,
13. 2" a—-c—b—z—y,
4.2 wa—c—x—b—y,
5.2 a—b—c—x—y,

/
/
/
/
6.2 ma—b—x—c—y,
/
/
/
/
/

—b—a—c—ozx—y,

7.2 a—2xz—c—b—y,
8.2 a—x—b—c—y,
19.2" =z —c—b—a—uy,
2002 »r—c—a—b—y,
2.2’ »x—b—c—a—y,



2.2 w5z —b—a—c—y,

2.2 w2 —a—c—b—y,

24. 2 w5z —a—b—c—uy.

con: l.Ly—ax—22.y—z2z—x, 3. >y —2,

4 x—2—>Yy b z—-y—ax,6.2z—>x—y.

peol: Ly =2 =1t —=vy = 0,2y =T —1— Uy — Uy,
By—=t—-x =9 =2 V,4Y—1t - — v, > vy,
5. =Y =1 =0y = Vg,6. 8 =Y —=1T— 0 — vy,
T2 —=t—=Y =0 = V,8 —=1t—=yY—= U — vy,
9.t =Yy =2 —=vy =V, 10. T =y =2 — vy — vy,
1.t =2 =y —vy = Vs, 12.t =T = Yy — Vg — Vy.
ell: .y—mx—c—b—a,2.y—r—c—a—b,
. y—mr—b—c—ady—-axz—-b—a—c,

5y —>x—a—c—b6.y—x—a—b—c,
7.2—y—c—b—a, 8 r—y—c—a—b,
9.92—y—b—c—a,10. 2 —y—b—a—c,
MM.e—y—a—c—b12.2—y—a—b—c
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