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Abstract

We introduce an efficient algorithm for determining a suitable projection
order for performing cylindrical algebraic decomposition. Our algorithm is
motivated by a statistical analysis of comprehensive test set computations.
This analysis introduces several measures on both the projection sets and the
entire computation, which turn out to be highly correlated. The statistical
data also shows that the orders generated by our algorithm are significantly
close to optimal.
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1 Introduction

Cylindrical algebraic decomposition (CAD) [ACM8443] is an important and pow-
erful tool in real algebraic geometry. One major application is real quantifier
elimination [Col75]; one prominent other application is adjacency algorithms
[ACM84b].

The pure decomposition algorithm constructs for a finite set A € R[xy, . . ., xr]
of multivariate polynomials in r variables a decomposition of real r-space into
finitely many cellssuch that over each cell all polynomials in A are sign-invariant.
With each cell there is simultaneously a test point inside this cell constructed in
such a form that the sign of the polynomials in A can be effectively determined.

The cAD construction is commonly described as consisting of three phases:

1. The projection phase starts out with the original set A of polynomials in r
variables. In r — 1 projection steps there are r — 1 further finite sets A,_,
..., Ay of polynomials with one fewer variable in each step generated.

2. In the base phase, the finitely many zeros of the set A; of univariate poly-
nomials obtained in the last projection step are computed in some exact
symbolic representation. Both the zeros and the open intervals between
these zeros are cells that yield a decomposition D, of 1-space. The zeros
are at the same time test points for themselves. For the intervals there are
test points explicitly computed.

3. The extension phase starts out with the decomposition D, of 1-space and
successively constructs decompositions D,, ..., D, of higher-dimensional
spaces. For obtaining D, there are the test points of D; plugged into the
polynomials of A,,;, which yields univariate polynomials. Then one pro-
ceeds like in the base phase.

One crucial result, which makes this technique work, is that the projection
generates polynomials in such a way that the polynomials in A, are sign-invariant
over the cells obtained from A, in the base phase, and that this remains true for
higher dimensions when plugging in test points from the cells.

Consider now a prenex first-order formula ¢ containing only polynomials
from A as terms, and let x4, ..., x, denote the quantified variables:

@ = Qi1 Xp41---Opx,w,  Q; € {3,V}.

It is easy to see that y has an invariant truth value over each cell in D,, and
using the test points, this truth value can be effectively determined. Moreover, it
Is possible to produce quantifier-free descriptions for the cells in D,. By means
of a rather straightforward recursive algorithm, which checks according to the
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Figure 1: CAD wrt. the variable orders y — x (left) and x — y (right)..

quantifiers Qy,1, ..., O, either at least oneor all cells in D4, ..., D,,a CAD can
be exploited for eliminating the quantifiers from ¢.

During the past 30 years there have been considerable research and publica-
tions on optimizing CAD. For the application to real quantifier elimination, the
introduction of partial cCAD (PCAD) [CH91] has been one major progress, which
affects the extension phase.

The vast majority of improvements, however, extremely focused on improving
the projection phase [McC84, McC88, Hon90, Laz94, Bro01, SS03]. Most sur-
prisingly, all these contributions concentrating on improved projection operators
never examined the relevance of the order in which the variables are projected.
If one is only interested in pure CAD, then this order can be chosen completely
arbitrarily. For quantifier elimination there are restrictions imposed by projecting
unquantified variables last and not interchanging 3 with V. There is, however, still
a most considerable degree of freedom.

We are going to demonstrate by means of a small example that the projection
order is highly relevant for the practical complexity of the overall procedure: We
consider two circles of radius 2,

clz(x+3)2+(y+1)2—4, cz:(x—3)2+(y—1)2—4,

one located at (—3, —1) and the other one located at (3, 1):

Figure 1 shows on the left hand side a cAD for these circles choosing the
projection order y — x. ThiscaD contains 1 +3+5+3+1+3+5+3+1=25
cells.



On the right hand side, Figure 1 shows, by the way of contrast, a corresponding
CAD using the projection order x — y. Note that the y-axis is drawn horizontally
here. We obtain considerably more cells: 1+3+5+4+7+9+7+5+3+1 =41,

It is obvious that the computation of this second CAD requires more computa-
tional resources while delivering a result of equal quality for most purposes.

This paper provides results for determining good variable orders from the in-
put beforehand, i.e., without actually constructing any CAD, in order to then con-
struct the desired CAD wrt. such an order.

The plan of the paper is as follows: In Section 2, we introduce time and
space measures for characterizing the complexity of a particular CAD computa-
tion. These measures apply partly to the projection phase and partly to the overall
computation. We discuss a comprehensive example set of CAD’s wrt. all relevant
orders and apply all our measures to all results. We then show on a precise formal
basis that all our measures are statistically strongly correlated. In particular there
are measures on the projection that are suitable for predicting the complexity of
the overall computation.

In Section 3, we introduce a heuristic algorithm for efficiently constructing
one good projection order wrt. to the relevant measures on the projection phase.
This is done without trying all relevant projection orders. We reuse our example
database from Section 2 to show two facts: First, our heuristic algorithm yields
projection orders that are statistically significantly close to optimal. Second, the
overhead originating from constructing the good projection order is negligible
while the gain is immense.

In Section 4 we finally summarize and evaluate our results.

2 Measures on CAD Computations

In this section we consider the following situation: There is a set A of polynomials
in r variables given, which possibly origin from a prenex formula ¢. For a variable
order X = (x,, ..., x1), which we also write x, — - -+ = x1, the projection results
In projectionsets A,, ..., A; of projection factors; for convenience we set here and
in the sequel A, := A. Based on these sets, the CAD tree D = (Dy, .. ., D,) is con-
structed. The levels D, ..., D, of D are caD’s for RY, ..., R", respectively. This
situation is completely specified by (A, X) or (¢, X), respectively. We have de-
veloped our methods on the basis of the classical Collins—Hong projection. They
are, however, also applicable to the other projection operators discussed in the
literature.

Our goal is to find for given A or ¢ a favorable projection order X at the
earliest possible stage. For this we want to be able to draw conclusions on the size
of the cAD from properties of the intermediate projection sets A,, A,_1, ..., A1.
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Therefore, we are going to systematically investigate numerous complete
cAD’s wrt. all relevant projection orders, consider certain measures on the pro-
jection sets as well as on the CAD’s, and examine statistical correlations between
these measures.

2.1 Measures

There are six measures that we take into account:
1. The number of projection factors in all the projection sets A,, ..., A;:
card(4, X) = )" |Ail.
i=1

2. The sum of total degrees of all monomials of all polynomials in all the
projection sets A,, ..., Az:

r

sotd(4, X) = ) ) o(f),

i=1 fGA,'
where, using the convention e = (e, . . ., er),
.
o(Teei )= X T
eckE ecE i=1

3. The number of cells in the resulting full cAD:

ncad(A, X) = |D,|.

4. The overall computation time of the full CAD computation in seconds:

tcad(A, X).

5. The number of leaves in the partial CAD tree that is generated for quantifier
elimination:

npcad(p, X) = |{ce DyuU---UD, |cisaleaf }|.

6. The overall computation time of the quantifier elimination by partial CAD
in seconds:

tge(p, X).



The time measures tcad and tge depend on the implementation and the machine.
We have used the cAD implementation of the second author in the REDLOG pack-
age [DS97] of the widespread computer algebra system REDUCE. We have carried
out all our computations on a 2.0 GHz Intel Pentium IV using 128 MB of RAM.

The first four measures card, sotd, ncad, and tcad are defined for sets A of
polynomials. They can be as well applied to formulas ¢ by considering the set of
polynomials occurring in these formulas. The last two measures npcad and tge, in
contrast, do not make sense outside a quantifier elimination context.

It might appear more natural to consider instead sums of total degrees of
monomials in our sotd the total degrees of the corresponding polynomials. Ex-
periments have shown that these measures are highly correlated. Our choice has
the advantage to favor sparse polynomials.

For the definition of npcad we have to recall the basic idea of the partial cAD
procedure for quantifier elimination [CH91]: When using full cAD, there is the
CADtree D = (Dq, ..., D,) computed, and then the matrix formula is evaluated
at the test points of the cells in D,. The truth values thus obtained are propa-
gated down to the corresponding root cell in D, according to the types of quan-
tifiers. Hence full cAD computation and its use for quantifier elimination are
two isolated subsequent steps. For partial CAD, in contrast, one tries to deter-
mine truth values for the matrix formulas during extension already for cells in
Dy, ..., D._q, ie., without fixing all variables to real numbers. For instance,
Xep1 — 42 > OA X3, — 4711x,13 = X444 is false for x,.; = V2, no matter
what x,.0, ..., x, are. Whenever one succeeds like this for a cell ¢ € D;, where
ielk,..., r}, this cell ¢ need not be further extended. In other words, the partial
CAD tree is pruned at this point, and ¢ becomes a leaf. From this discussion, it is
not hard to see that

| Di| < npcad(e, X) < ncad(g. X) = |D,|.

It is now also clear, that it is not reasonable to consider the time for the partial
CAD construction as a measure: This construction is not isolated from the quanti-
fier elimination but contains a considerable part of the quantifier elimination work,
viz. hard computations with algebraic numbers for trial evaluation of the matrix
formula. The other part of the quantifier elimination work, viz. solution formula
construction, is, in contrast, still an isolated subsequent step. From that point of
view, we consider tge an appropriate counterpart for tcad.

The first two measures card and sotd can be applied after or even during pro-
jection. They are candidates for suitable criteria for determining projection orders.
The latter four measures ncad, tcad, npcad, and tge, in contrast, can be applied
only after a complete CAD computation or quantifier elimination, respectively.
They are going to be used for evaluating the significance of our candidate criteria.
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2.2 Computation of the Test Set

We are going to discuss a test set consisting of six CAD examples, mostly from
the literature. Each example has been computed wrt. a significant number of pro-
jection orders. In fact, we have computed a much more comprehensive example
set comprising 48 examples, and selected these six examples as a representative
subset for this paper.

All our examples are in fact quantifier elimination examples, which allows us
to apply all our measures. Note that also from the point of view of pure CAD, it
is not at all a restriction to consider only such examples; they can be considered
deliverers of interesting sets of polynomials.

2.2.1 Admissible Projection Orders

On the other hand, we consider the quantifier block structure of the examples in
order to restrict the set possible orders to a reasonable subset: Strictly speaking,
quantifier elimination by cAD for a prenex formula

@ = Or41Xk+1 - - - Qr X,y

requires a projection order with two properties: First, all quantified variables x,,
..., Xx41 are projected before all unquantified variables x, ..., x;.

Second, the quantified variables have to be projected essentially in the order
Xre1 — -+ — Xx,.. This requirement for a fixed projection order is weakened by
the fact that in ¢ like neighbored quantifiers can be equivalently interchanged.

For instance, 3x3yVzy is equivalent to 3y3dxVzy but not generally equivalent
to IxVz3yy. Consequently x - y — zand y - x — z are both possible
projection orders in this example, while x — z — y is not. This observation
suggests to rewrite 3{x, y}V{z}w thus making visible the quantifier blocks.

So returning to the general discussion, we can rewrite our prenex formula ¢
as

@ =01B;...0,Byy,

where Q; # O, fori e {1, ..., n—1} and By, ..., B, are finite sets of variables.
This is the unique block representation of a prenex formula. For convenience, let
B, denote the set of unquantified variables.

From that point of view, admissible projection orders for quantifier elimination
are characterized by projecting

B, - ---— B; - B,
while within each block B; the order can be freely chosen. Obviously, the number
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of admissible projection orders is given by

2.2.2 The Quartic Problem

n

I8

i=0

The quartic problem has been suggested by Lazard [Laz88]. It asks for nec-
essary and sufficient conditions on the coefficients of a quartic polynomial to be

positive semidefinite:

quartic = Vx(px2 +gx+r+xt> O).

There are 1! - 31 = 6 admissible orders. The following table presents the compu-

tation results:

order card sotd ncad tcad npcad tge
1 (x,r.q,p) 7 54 445 471 251 7.04
2 (x,r,pq) 7 54 445 83.39 251 138.18
3 (x,q.r.p) 7 50 417 054 235 0.89
4 (x,q.p,r) 7 50 417 164 239 2.55
5 (x,p.r.q) 9 66 1 >600 1 >600
6 (x,p.q.r) 9 66 1 >600 1 >600

We see that card cannot predict differences in ncad, where sotd can. Note that
ncad and tcad are surprisingly unrelated here. On the other hand, there is one
order, viz. no. 3, that is optimal wrt. all criteria. We have automatically aborted
all our computations after 10 minutes. Measures that are unknown due to such
unfinished computations are marked with L.

2.2.3 A Real Implicitization Problem

This example is an exercise on complex implicitization in a textbook [CLO92].
Our formulation asks for a corresponding real implicitization:

cls7 = EIuEIv(x =uvAy= u? Az = uz).

The number of admissible orders is 21 - 31 = 12.



order card sotd ncad tcad npcad tge

1 (v,u,z,y,x) 9 25 839 009 266 0.16
2 (v,u,z,x,) 9 25 889 009 266 0.15
3 (v,u,y z,x) 9 25 8389 0.15 268 0.20
4 (v,u,y,x,2) 9 25 839 014 266 0.22
5 (v,u,x,z,) 9 25 8389 014 268 0.19
6 (v,u,x,y, 2) 9 25 889 0.15 266 0.19
7 (u,v,z,y x) 11 36 1571 0.19 508 0.28
8 (u,v.z,x,y) 11 36 1571 0.18 508 0.28
9 (wv,yzx) 11 36 1571 0.17 582 0.29
10 (w,v,y,x,z) 11 36 1571 0.16 580 0.29
11 (u,v,x,z,y) 11 36 1571 0.17 582 0.29
12 (u,v,x,y,z) 11 36 1571 0.17 580 0.28

Compared to the previous example there is much less variation here. Note that
a choice of projection order according to card or sotd yields significantly good
ncad, tcad, npcad, and tge.

2.2.4 Range of Lower Bounds

The following formula asks for the possible range of strict lower bounds on the
values of a parabola that has no real zeros.

as6 = ‘v’xVa‘v’chElx’((a >0Aax? +bx' +c#0) — y < ax?+bx + c).

There are 1! - 41 . 11 = 24 admissible orders:

order card sotd ncad tcad npcad tge
(x',¢c,b,a,x,y) 11 42 4199 0.39 283 0.07
(x',c,b,x,a,y) 11 42 4199 0.48 307 0.09
(x',c,a, b, x,y) 12 44 5231 0.55 487 0.15
(x',c,a,x,b,y) 12 44 5231 0.55 487 0.14
,¢,x,b,a,y) 13 53 6389 1.37 341 0.13
(x',¢c,x,a,b,y) 12 49 6389 0.38 357 0.09
(x',b,c,a,x,y) 11 50 4007 0.44 241 0.06
(x',b,c,x,a,y) 11 50 4007 0.55 255 0.08

OO OB~ WwWwhN PR
—~
><\

9 (x,b,a,c,x,y) 12 50 5027 0.62 395 0.12
10 (x/,b,a,x,c,y) 12 50 5027 0.62 395 0.11
11 (x'.b,x,c,a,y) 12 50 5027 0.58 305 0.10
12 (x',b,x,a,c,y) 12 50 5027 0.59 321 0.10
13 (x',a,c,b,x,y) 12 43 5007 0.46 523 0.18

continued on the next page



continued from the previous page

order card sotd ncad tcad npcad tge
14 (x',a,c,x,b,y) 12 43 5007 0.40 523 0.17
15 (x',a,b,c,x,y) 11 39 3975 0.38 423 0.16

16 (x',a,b,x,c,y) 11 39 3975 0.40 423 0.15

17 (x',a,x,c,b,y) 11 39 3975 0.28 415 0.16

18 (x',a,x,b,c,y) 11 39 3975 0.29 415 0.14

19 (x',x,c,b,a,y) 11 36 3709 0.52 348 0.16

20 (x',x,c,a,b,y) 11 36 3709 0.21 358 0.11

21 (x',x,b,c,a,y) 9 28 2365 0.27 272 0.11
X

22 (x',x,b,a.c,y) 9 28 2365 0.27 288 0.11
23 (x'.,x,a,¢,b,y) 9 28 2365 013 290 0.08
24 (x',x,a,b,c,y) 9 28 2365 0.14 290 0.08

This is another example with little variation. Here card and sotd do not discover
optimal orders wrt. npcad or tge. The orders that they point at are, however,
absolutely acceptable.

2.2.5 Consistency in Strict Inequalities

This problem decides whether the intersection of the open ball with radius 1 cen-
tered at the origin and the open cylinder with radius 1 and axis the line x = 0,
y + 2 = 2 is nonempty. It has been introduced by McCallum and used by Collins
and Hong for demonstrating PCAD [McC87, CH91]:

con = EIzEIxEIy(x2+y2+z2 <IAxX®*+(y+z-2)°< 1).

There are 3! = 6 admissible orders:

order card sotd ncad tcad npcad tge
(v.x,z) 12 46 251 0.02 51 0.01
(y. 2. x) 8 43 365 224 43  0.04
(x,y,z) 11 33 193 0.02 29 0.01
(x,z,y) 11 33 193 0.02 37 <0.01
(z.y.x) 8 43 365 290 47  0.07
(z,x,y) 12 46 251 0.02 51 0.01

OOl WDN P

Comparing the lines 2 and 5 with 3 and 4, we observe that card and sotd contradict
each other. Following sotd in these cases yields the best values for ncad, tcad,
npcad, and tge.
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2.2.6 Parametrized Collision Problem

The following formula asks if two moving objects, a circle and a square, are going
to collide at some time ¢ in the future. The circle is moving with constant velocity
(1,0), while the velocity of the square is parameterized with (v,, v,). This exam-
ple has been used by Collins and Hong for several fixed choices of (v, v,) [CH91].
pcol = EItEIxEIy(t >S0N-1<x—-vit<1A
—9§y—vyt§—7/\(x—t)2+y2 Sl).
The number of admissible orders is 3! - 21 = 12:
order card sotd ncad tcad npcad tge

1 (v.x,1,vy,vy) 62 250 144971 47.86 6969 3.78
2 (y.x,t,vy,v)) 62 250 144971 121.13 6969 491
3 (v.t.x, vy, vy) 1 1 1 >600 1 >600
4 (y.t,x,vy,vy) 4678 227337 1 >600 1 >600
5 (x,y.1,vy,vy) 62 248 149925 58.95 13310 4.53
6 (x,y.t vy vy) 62 248 149925 15150 13310 7.51
7 (x,t,y, vy vy) 57 323 1 >600 1 >600
8 (x.t,y, vy vy) 57 323 1 >600 1 >600
9 (ty x, vy vy) 1 1 1 >600 1 >600
10 (¢, y,x, vy, vy) 1 1 1 >600 1 >600
11 (1, x, y, vy, vy) 1 1 1 >600 1 >600
12 (t, x,y, vy, vy) 1 1 1 >600 1 >600

In this example we observe an immense variety in all measures. In particular, the
orders in the lines 3, 9-12 do not even allows to finish projection within the time
limit. The probability of failing to finish full as well as partial CAD computation
for arandom order is 2/3. Minimal card misleadingly points at such failing orders.
Minimal sotd does not point at the optimal order but still at acceptable ones.

2.2.7 The X-Axis Ellipse Problem

The X -Axis Ellipse Problem has been firstly stated by Kahan [Kah75]. It has been
formulated as a quantifier elimination problem by Lazard [Laz88]. The problem
Is to write down conditions such that the ellipse

(x—¢)  (y—a)?
2 T ybz -

is inside the circle x? + y? = 1. We treat the special case d = 0:

1

ell = Vx‘v’y(bz(x — ) +ad%y? = d’h* — x>+ y* < 1)‘

There are 2! - 3! = 12 admissible orders:
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order card sotd ncad tcad npcad tge
(y,x,c,b,a) 32 107 114541 46.64 37883 29.68
(y,x,c,a,b) 28 103 51477 4554 11635 28.70
(y,x,b,c,a) 26 89 64625 17.10 21059 15.59

1

2

3

4 (y,x,b,a,c) 27 91 96833 29.71 20431 17.70

5 (v.,x,a,¢b) 36 119 1 >600 74587 260.70

6 (yv.x,a bc) 43 129 1 >600 1 >600

7 (x,y,c,b,a) 122 522 1 >600 1 >600

8 (x,y,c,a,b) 109 537 1 >600 1 >600

9 (x,y,b,c,a) 77 345 1 >600 1 >600
10 (x,y,b,a,c) 74 331 1 >600 1 >600
11 (x,y,a,c,b) 136 761 1 >600 1 >600
12 (x,y,a,b,c) 143 751 1 >600 1 >600

Similar to the previous example, there is probability of only 1/3 to finish full cAD,
and there is only a slightly higher probability to finish partial cAD for a random
order. Both minimal card and sotd point at an optimal order wrt. tcad, npcad, and
tge and this order is almost optimal wrt. ncad.

2.3 Statistical Correlations

In the informal remarks after presenting for each of our examples the resulting
table, we have collected some positive and negative observations concerning the
possible correlations between our measures.

We are now going to systematically examine the correlations on a precise
formal basis. To motivate this, consider the x-axis ellipse problem from Sec-
tion 2.2.7. For the 12 admissible projection orders the card values (lower line)
and the corresponding sotd values (upper line) differ pretty much as can be seen
from the following interpolated plot:

900
800 »
700 n
600 - .
500 - .
400 - .
300 - .
200 -
100

O \/ v \/ |
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Nevertheless, it is our impression that there is a correlation between these mea-
sures. To substantiate this, we introduce a formal notion of correspondence: Con-
sider lists p = (py1, ..., p)and g = (q1, ..., q)) iInR U {L} like the card column
and the sotd column for the ellipse example. The value L is used to encode that
the corresponding value is unknown. Define

I={{ij}|1<i<j<landp,p; g, q €R};

this is the set of all unordered pairs of different indices (orders) for which all
values are known. On this basis, we define

C={{ij}eA|sign(p, - p;) = sign(a; — q;) }.

the subset of all pairs of indices where the corresponding values for p are ordered
in exactly the same way as the ones for ¢. Finally, we define

C'={{i.j} € A | Isign(p; — p;)| # |sign(g; — q;)| }.

where the corresponding orders between the values are at least not completely
opposite.

If we observe C = I, then this would suggest very good correspondence. If
{i,j} ¢ C for some {i, j} € I, then we would consider it good correspondence to
at least have {i, j} € C’. This gives rise to the following definition of the degree
of correspondence between p and q. It is defined for || > O:

C| +0.5|C
doc(p. ) < 11+ 05IC1

1]
Note that doc is commutative.

It is not hard to see that for fixed list length /, the average over the degrees of
correspondences for all possible choices of pairs of lists is 0.5. A value greater
than 0.5 thus indicates an above-average correspondence. Four our motivating
ellipse example above, we obtain, e.g., doc(card, sotd) = 0.97.

The following table collects for all our examples the doc values for the relevant
combinations of card, sotd, ncad, tcad, npcad, and tge. For convenience, the doc’s
are multiplied by 100 thus rescaling them to percentages:

€ [0, 1].

quartic cls7 as6 con pcol ell @

card-ncad 67 100 89 46 67 67 72
sotd-ncad 100 100 88 74 33 67 77
card-tcad 50 81 78 30 50 100 64
sotd-tcad 83 81 85 56 33 100 73
card-npcad 58 84 67 67 67 70 68
sotd—npcad 91 84 54 93 33 70 70
card-tge 50 82 62 33 50 100 62
sotd-tge 83 82 47 60 33 100 67
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The last column gives the averages over the corresponding lines. These averages
indicates that sotd has a significantly higher doc with all measures on the complete
computation than card.

We thus consider sotd in contrast to card to be a suitable indicator after pro-
jection for the time and space to be expected for the overall computation.

3 Constructing Good Orders

We recall from the previous section that sotd(A, X) for a set A of polynomials
and a projection order X is the sum of the total degrees of all monomials in all
polynomials in all projection sets A,, ..., A;. For a prenex first-order formula ¢
we may also speak of sotd(¢, X) referring to the set of polynomials occurring in
@.

The main result of the previous section is the fact that sotd is a suitable mea-
sure that is correlated with a high degree of correspondence to all measures that
one possibly wishes to optimize in order to save computational resources:

1. small size of the full cAD (ncad),

2. fast computation time for the full cAD (tcad),

3. small size of the partial CAD (npcad),

4. fast computation time for quantifier elimination (tge).

On the basis of this result we can conclude from the knowledge of all pro-
jection sets for all admissible orders on the interesting time and space measures
listed above without actually performing any base phase or extension phase.

The remaining problem is the following: In order to get a basis for the deci-
sion, there are still projection phases wrt. all admissible orders to be performed.
The worst-case number of admissible orders is the factorial of the number of vari-
ables and hence exponential in the word length of the input.

In this section we are going to suggest a heuristic algorithm for finding a good
projection order wrt. sotd. This algorithm will require quadratically many projec-
tion steps in the number of variables and thus in the word length.

We are going to evaluate the quality of the orders determined by our algorithm
on the basis of our example set introduced in the previous section. It is going to
turn out that the practical computation times absolutely negligible, while the gain
obtained from using the computed orders is immense.
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3.1 Greedy Projection

We suggest a greedy algorithm for finding a good admissible projection order
wrt. sotd. By greedy, we refer to roughly the following idea: We perform the first
projection step wrt. to all possible variables. Then we determine the sum of total
degrees for each single obtained sets. We greedily take the best one, throw away
all others, and repeat like that until there are no variables left to order.

Algorithm 1 (Greedy Projection) Input: a finiteset A C R[xg,..., x.], B C
{x1,..., x,}. Output: A projection order w, an intermediate projection set A.

1 begin

2 w .= ()

3 while B # ¢ do

4 A =1

5 for each x € B do

6 A" := project({ f € A| xnotin f},x)
7 s’ = ZfeA” G(f)

8 if A= _1Lors” <s' then

9 A =A"U{feA]|xnotin f}
10 s ="

11 x =x

12 fi

13 od

14 w = wo (x)

15 A=A

16 B =B\ {x'}

17 od

s end

For sets A of polynomials we can straightforwardly apply our algorithm to the
given set A and the set of all variables occurring in the polynomials in A.

For formulas ¢, we have to recall our discussion of admissible orders in Sec-
tion 2.2.1: For a formula ¢ = Q1B; ... Q,B,y in prenex block representation,
the admissible projection orders are characterized by projecting the blocks in the
order

B,— ---—> B; - By,

where B, denotes the set of all unquantified variables. For each of these blocks,
the order can be freely chosen. The input A of our algorithm for the first block
B, is the original set of polynomials in ¢. In the sequel, for each block B; with
ie{0,..., n — 1} the input A is the A returned from the preceding call for B;,;.

Note that the algorithm does for several reasons not necessarily find a projec-
tion order yielding really minimal sotd:
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1. We apply a local criterion on projection levels, while sotd is a global crite-
rion on entire projections. In other words, the projection order with smallest
sotd need not necessarily have small sums of total degrees in the set obtained
after the first projection step.

2. When judging in Line 7 the quality of a trial projection wrt. some variable
x, the set A” is not perfectly the set that has to be considered: Some of the
polynomials sorted out in Line 6 would belong into A” while others would
not. This depends on the next variable to be projected, which we do not yet
know.

Nevertheless, we shall see that our greedy algorithm provides orders of very high
quality in the following sense: First, they are as a rule close to optimal. We
are going to substantiate this in the following section by means of a statistical
analysis. Second, and even more important, the computed orders never exceed the
time limit in any of our examples, even when there is a high probability of failing.

3.2 CAD Performance with Greedy Projection

The following tables provide a statistical analysis of the performance of the orders
generated by our greedy algorithm. It shows that the performance of these orders
Is considerably above-average. The extra computing time is negligible.

quartic cls?7 ase6
order no. by greedy 3 1 22
time for greedy 0.01 <0.01 0.01
ncad by greedy 417 889 2365
rank w/i ncad lof6 1ofl12 1lof24
median of ncad 445.00 1230.00 4103.00
mean of ncad 1 1230.00 4273.00
tcad by greedy 0.54 0.09 0.27
rank w/i tcad lof6 1ofl2 4o0f24
median of tcad 44.05 0.16 0.42
mean of tcad >215.04 0.15 0.45
npcad by greedy 235 266 288
rank w/i npcad lof6 1ofl1l2 5o0f24
median of npcad 251.00 388.00 352.50
mean of npcad 1 41167 364.25
tge by greedy 0.89 0.16 0.11
rank w/i tge lof6 2o0f12 100f24
median of tqe 72.61 0.25 0.11
mean of tge >224.78 0.24 0.11

16



con pcol ell

order no. by greedy 3 5 3
time for greedy <0.01 0.13 0.01
ncad by greedy 193 149925 64625
rank w/i ncad lof6 3o0fl2 2o0f12
median of ncad 251.00 1 1
mean of ncad 269.67 1 1
tcad by greedy 0.02 58.95 17.10
rank wi/i tcad lof6 2o0f12 1ofl2
median of tcad 0.02 1 1
mean of tcad 0.87 >431.62 >411.59
npcad by greedy 29 13310 21059
rank w/i npcad lof6 3o0fl2 3o0fl2
median of npcad 45.00 1 1
mean of npcad 43.00 1 1
tge by greedy 0.01 4.53 15.59
rank w/i tge 20f6 2o0f12 1lofl2
median of tqe 0.01 1 1
mean of tge 0.02 >401.72 >379.36

4 Conclusions

We have shown that the projection order is of crucial importance for the success
of CAD computations. For determining the quality of a given projection order, we
have shown that there is one single measure, viz. sotd, on the projection sets that
Is correlated to all interesting time and space measures on the computation of a
full caD as well as on quantifier elimination by partial cCAD. We have introduced
a greedy algorithm for efficiently constructing a good projection order wrt. sotd.
Our work closes a considerable gap within the CAD framework.
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